Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk

Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s ban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-09, Vol.2022, p.1-7
Hauptverfasser: Zhang, Junzhi, Chen, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2022
creator Zhang, Junzhi
Chen, Lei
description Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.
doi_str_mv 10.1155/2022/7131143
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9507697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719559310</galeid><sourcerecordid>A719559310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-db79500064d2c297092b65be60e87ef42cc94d74487381d993ae829d96ce64b83</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgexYK3e-QMGvBF0bD4mXzfCUlwVFgttvQ6ZzJndtDPJmmRc-u_NsEtRL7w6B86T5-TwVtUbjD5izNglQYRcCkwxbumz6hxzKRpGBH3-1HP2onqZ0j1CTDBEzqthtd-Pzprsgq_DUH-HOZqxlHwI8aE-uLyrV3MONsQI4xFzvt4Ev23uIE71OkSwJmXnt8v728eUYXK2XjtvvHXFdePSw6vqbDBjgtenelH9WH--u_rabK6_fLtabRpLJc1N3wnFEEK87YklSiBFOs464AikgKEl1qq2F20rBZW4V4oakET1ilvgbSfpRfXp6N3P3QS9BZ_LOXof3WTiow7G6b8n3u30NvzSZa3gShTBu5Mghp8zpKwnlyyMo_EQ5qSJwJJTyTAv6Nt_0PswR1_OWyjBMFPkD2prRtDOD6HstYtUrwRWjCmKUaE-HCkbQ0oRhqcvY6SXbPWSrT5lW_D3R3znfG8O7v_0b3biou8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717515926</pqid></control><display><type>article</type><title>Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Junzhi ; Chen, Lei</creator><contributor>Cao, Ning ; Ning Cao</contributor><creatorcontrib>Zhang, Junzhi ; Chen, Lei ; Cao, Ning ; Ning Cao</creatorcontrib><description>Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/7131143</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Anomalies ; Autocorrelation ; Banking ; Banking industry ; Banks ; Banks (Finance) ; Commercial banks ; Consumer Price Index ; Credit risk ; Early warning systems ; Equity financing ; Financial risk ; Forecasting techniques ; Forecasts and trends ; GDP ; Gross Domestic Product ; Growth rate ; Interest rates ; Macroeconomics ; Monetary policy ; Neural networks ; Regulation of financial institutions ; Risk ; Stochastic models</subject><ispartof>Computational intelligence and neuroscience, 2022-09, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Junzhi Zhang and Lei Chen.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Junzhi Zhang and Lei Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Junzhi Zhang and Lei Chen. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-db79500064d2c297092b65be60e87ef42cc94d74487381d993ae829d96ce64b83</citedby><cites>FETCH-LOGICAL-c383t-db79500064d2c297092b65be60e87ef42cc94d74487381d993ae829d96ce64b83</cites><orcidid>0000-0003-1468-715X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507697/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507697/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><contributor>Cao, Ning</contributor><contributor>Ning Cao</contributor><creatorcontrib>Zhang, Junzhi</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><title>Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk</title><title>Computational intelligence and neuroscience</title><description>Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.</description><subject>Anomalies</subject><subject>Autocorrelation</subject><subject>Banking</subject><subject>Banking industry</subject><subject>Banks</subject><subject>Banks (Finance)</subject><subject>Commercial banks</subject><subject>Consumer Price Index</subject><subject>Credit risk</subject><subject>Early warning systems</subject><subject>Equity financing</subject><subject>Financial risk</subject><subject>Forecasting techniques</subject><subject>Forecasts and trends</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Growth rate</subject><subject>Interest rates</subject><subject>Macroeconomics</subject><subject>Monetary policy</subject><subject>Neural networks</subject><subject>Regulation of financial institutions</subject><subject>Risk</subject><subject>Stochastic models</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFDEUhgexYK3e-QMGvBF0bD4mXzfCUlwVFgttvQ6ZzJndtDPJmmRc-u_NsEtRL7w6B86T5-TwVtUbjD5izNglQYRcCkwxbumz6hxzKRpGBH3-1HP2onqZ0j1CTDBEzqthtd-Pzprsgq_DUH-HOZqxlHwI8aE-uLyrV3MONsQI4xFzvt4Ev23uIE71OkSwJmXnt8v728eUYXK2XjtvvHXFdePSw6vqbDBjgtenelH9WH--u_rabK6_fLtabRpLJc1N3wnFEEK87YklSiBFOs464AikgKEl1qq2F20rBZW4V4oakET1ilvgbSfpRfXp6N3P3QS9BZ_LOXof3WTiow7G6b8n3u30NvzSZa3gShTBu5Mghp8zpKwnlyyMo_EQ5qSJwJJTyTAv6Nt_0PswR1_OWyjBMFPkD2prRtDOD6HstYtUrwRWjCmKUaE-HCkbQ0oRhqcvY6SXbPWSrT5lW_D3R3znfG8O7v_0b3biou8</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>Zhang, Junzhi</creator><creator>Chen, Lei</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1468-715X</orcidid></search><sort><creationdate>20220916</creationdate><title>Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk</title><author>Zhang, Junzhi ; Chen, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-db79500064d2c297092b65be60e87ef42cc94d74487381d993ae829d96ce64b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Autocorrelation</topic><topic>Banking</topic><topic>Banking industry</topic><topic>Banks</topic><topic>Banks (Finance)</topic><topic>Commercial banks</topic><topic>Consumer Price Index</topic><topic>Credit risk</topic><topic>Early warning systems</topic><topic>Equity financing</topic><topic>Financial risk</topic><topic>Forecasting techniques</topic><topic>Forecasts and trends</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Growth rate</topic><topic>Interest rates</topic><topic>Macroeconomics</topic><topic>Monetary policy</topic><topic>Neural networks</topic><topic>Regulation of financial institutions</topic><topic>Risk</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Junzhi</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Junzhi</au><au>Chen, Lei</au><au>Cao, Ning</au><au>Ning Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-09-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/7131143</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1468-715X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-09, Vol.2022, p.1-7
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9507697
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Anomalies
Autocorrelation
Banking
Banking industry
Banks
Banks (Finance)
Commercial banks
Consumer Price Index
Credit risk
Early warning systems
Equity financing
Financial risk
Forecasting techniques
Forecasts and trends
GDP
Gross Domestic Product
Growth rate
Interest rates
Macroeconomics
Monetary policy
Neural networks
Regulation of financial institutions
Risk
Stochastic models
title Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Neural%20Network%20with%20Autocorrelation%20in%20Long-Term%20Forecasting%20of%20Systemic%20Financial%20Risk&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Zhang,%20Junzhi&rft.date=2022-09-16&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/7131143&rft_dat=%3Cgale_pubme%3EA719559310%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717515926&rft_id=info:pmid/&rft_galeid=A719559310&rfr_iscdi=true