Application of Neural Network with Autocorrelation in Long-Term Forecasting of Systemic Financial Risk

Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s ban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-09, Vol.2022, p.1-7
Hauptverfasser: Zhang, Junzhi, Chen, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.
ISSN:1687-5265
1687-5273
DOI:10.1155/2022/7131143