Reaction Model and Mechanism of Preparing (Al2O3 + C) Precursor for Carbothermal Synthesis of AlN by a Modified Low Temperature Combustion Synthesis Method

The preparation of a homogeneous mixture of (Al2O3 + C) precursor is the key step for the successful synthesis of AlN powders by the carbothermal reduction and nitridation method. In the present work, the homogeneous (Al2O3 + C) precursor prepared by a modified low temperature combustion synthesis (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-09, Vol.15 (18), p.6216
Hauptverfasser: Chu, Aimin, Zhang, Longqing, Ud-din, Rafi, Zhao, Yuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The preparation of a homogeneous mixture of (Al2O3 + C) precursor is the key step for the successful synthesis of AlN powders by the carbothermal reduction and nitridation method. In the present work, the homogeneous (Al2O3 + C) precursor prepared by a modified low temperature combustion synthesis (MLCS) method by using aluminum nitrate, glucose, and urea as materials exhibited high reaction activity. Furthermore, in order to absolutely control the MLCS process and continuously improve the properties of (Al2O3 + C) precursor, the reaction model of preparing precursors from various molar ratios of urea to aluminum nitrate (U/Al) was investigated by carrying out thermodynamic calculation and by performing experiments in the present work. The whole process was found to involve various phenomena. First, the type and amount of various generated nitrogen-containing gases (N2, NO, N2O, N2O3, N2O4, and NO2) vary with the change of U/Al during combustion process. Second, under the present experimental condition of ignition temperature, the decomposition reaction of aluminum nitrate is more prone to occur than the combustion reaction of urea. Third, the real reaction system with U/Al = 2.5 reaches the highest combustion temperature which is well consistent with the propellant chemical theory. The occurrence of above phenomena was discussed in detail. Moreover, the reaction mechanism of synthesizing precursor from U/Al = 1 with high reaction activity was investigated by using various techniques such as FTIR, XRD, and DTA.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15186216