Strain Screening and Particle Formation: a Lysinibacillus boronitolerans for Self-Healing Concrete

Microbial-induced calcite precipitation is a promising technology to solve the problem of cracks in soil concrete. The most intensively investigated microorganisms are urease-producing bacteria. Lysinibacillus that is used as urease-producing bacteria in concrete repair has rarely been reported. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2022-09, Vol.88 (18), p.e0080422-e0080422
Hauptverfasser: Xu, Jian-Miao, Lu, Cheng, Wang, Wei-Jie, Du, Zi-Ye, Pan, Jia-Jia, Cheng, Feng, Wang, Yuan-Shan, Liu, Zhi-Qiang, Zheng, Yu-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial-induced calcite precipitation is a promising technology to solve the problem of cracks in soil concrete. The most intensively investigated microorganisms are urease-producing bacteria. Lysinibacillus that is used as urease-producing bacteria in concrete repair has rarely been reported. In this study, Lysinibacillus boronitolerans with a high urease activity was isolated from soil samples. This strain is salt- and alkali-tolerance, and at pH 13, can grow to ~OD 2.0 after 24 h. At a salt concentration of 6%, the strain can still grow to ~OD 1.0 after 24 h. The feasibility of using this strain in self-healing concrete was explored. The data showed that cracks within ~0.6 mm could be repaired naturally with hydration when spores and substrates were added to the concrete in an appropriate proportion. Moreover, the number and morphology of CaCO crystals that were produced by bacteria can be influenced by the concrete environment. An efficiency method to elucidate the process of microbial-induced calcium carbonate crystal formation was established with Particle Track G400. This study provides a template for future studies on the theory of mineralization based on microorganisms. The formation of calcium carbonate crystals in concrete by urease-producing bacteria is not understood fully. In this study, a Lysinibacillus boronitolerans strain with a high urease activity was isolated and used to analyze the counts and sizes of the crystals and the relationship with time. The data showed that the number of crystal particles increases exponentially in a short period with sufficient substrate, after which the crystals grow, precipitate or break. In concrete, the rate-limiting steps of calcium carbonate crystal accumulation are spore germination and urease production. These results provided data support for the rational design of urease-producing bacteria in concrete repair.
ISSN:0099-2240
1098-5336
DOI:10.1128/aem.00804-22