Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV)
We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of...
Gespeichert in:
Veröffentlicht in: | Organometallics 2022-06, Vol.41 (11), p.1353-1363 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of a thorium mesoionic carbene complex. Complexes 4U and 4Th were prepared via a C–H activation intramolecular cyclometallation reaction of actinide halides, with concomitant formal 1,4-proton migration of an N-heterocyclic olefin (NHO). Quantum chemical calculations suggest that the An–carbene bond comprises only a σ-component, in contrast to the uranium(III) analogue [U{N(SiMe3)2}3(MIC)] (1) where computational studies suggested that the 5f3 uranium(III) ion engages in a weak one-electron π-backbond to the MIC. This highlights the varying nature of actinide-MIC bonding as a function of actinide oxidation state. In solution, 4Th exists in equilibrium with the Th(IV) metallacycle [Th{N(SiMe3)2}2(CH2SiMe2NSiMe3)] (6Th) and free NHO (3). The thermodynamic parameters of this equilibrium were probed using variable-temperature NMR spectroscopy yielding an entropically favored but enthalpically endothermic process with an overall reaction free energy of ΔG 298.15K = 0.89 kcal mol–1. Energy decomposition analysis (EDA-NOCV) of the actinide–carbon bonds in 4U and 4Th reveals that the former is enthalpically stronger and more covalent than the latter, which accounts for the respective stabilities of these two complexes. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/acs.organomet.2c00120 |