Nonlinear imaging and vibrational spectroscopic analysis of cellulosic fibres treated with COEX® flame-retardant for tapestry preservation

Cellulose-based fabrics are widely used in the preservation and storage of historic tapestries. Their ease of flammability is a serious concern that greatly limits their applications and requires the development of effective and safe flame-retardant treatments. In this work, we analysed linen and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-09, Vol.12 (41), p.26744-26752
Hauptverfasser: Dal Fovo, Alice, Striova, Jana, Quintero Balbas, Diego, Mattana, Sara, Tacconi, Niccolò, Cicchi, Riccardo, Fontana, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellulose-based fabrics are widely used in the preservation and storage of historic tapestries. Their ease of flammability is a serious concern that greatly limits their applications and requires the development of effective and safe flame-retardant treatments. In this work, we analysed linen and cotton textile samples before and after COEX® treatment, a patented green technology imparting anti-flame properties by functionalizing the cellulose molecules with phosphorus and sulphur groups. Some of the samples were also exposed to photo-induced ageing after the treatment. The resulting structural and chemical changes in both fibres were characterized by nonlinear optical imaging modalities, namely Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence microscopies (TPEF), and Raman and Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopies. Complementary results evidenced a reduction in microfibril crystallinity, attributed mainly to the reduction of hydrogen bonding among cellulose macromolecules, with a concomitant increase in fluorescence possibly due to the introduction of ester groups into cellulose chains and to decomposition of lignin into fluorescent by-products. This innovative approach, based on SHG/TPEF imaging and vibrational spectroscopic techniques, investigates the effect of flame-retardant COEX® treatment on flax and cotton fibres by relating micrometric structural properties to the chemical changes.
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra02384a