Modelling membrane curvature generation using mechanics and machine learning

The deformation of cellular membranes regulates trafficking processes, such as exocytosis and endocytosis. Classically, the Helfrich continuum model is used to characterize the forces and mechanical parameters that cells tune to accomplish membrane shape changes. While this classical model effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2022-09, Vol.19 (194), p.20220448
Hauptverfasser: Malingen, S A, Rangamani, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deformation of cellular membranes regulates trafficking processes, such as exocytosis and endocytosis. Classically, the Helfrich continuum model is used to characterize the forces and mechanical parameters that cells tune to accomplish membrane shape changes. While this classical model effectively captures curvature generation, one of the core challenges in using it to approximate a biological process is selecting a set of mechanical parameters (including bending modulus and membrane tension) from a large set of reasonable values. We used the Helfrich model to generate a large synthetic dataset from a random sampling of realistic mechanical parameters and used this dataset to train machine-learning models. These models produced promising results, accurately classifying model behaviour and predicting membrane shape from mechanical parameters. We also note emerging methods in machine learning that can leverage the physical insight of the Helfrich model to improve performance and draw greater insight into how cells control membrane shape change.
ISSN:1742-5662
1742-5689
1742-5662
DOI:10.1098/rsif.2022.0448