Immunoinformatics approach to epitope-based vaccine design against the SARS-CoV-2 in Bangladeshi patients

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Genetic Engineering and Biotechnology 2022-09, Vol.20 (1), p.136-14, Article 136
Hauptverfasser: Akter, Shahina, Shahab, Muhammad, Sarkar, Md. Murshed Hasan, Hayat, Chandni, Banu, Tanjina Akhtar, Goswami, Barna, Jahan, Iffat, Osman, Eshrar, Uzzaman, Mohammad Samir, Habib, Md Ahashan, Shaikh, Aftab Ali, Khan, Md. Salim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. Result The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. Conclusion This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.
ISSN:1687-157X
2090-5920
DOI:10.1186/s43141-022-00410-8