Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC)

The purpose of this study was to access the ability of the natural PPAR agonist, eicosapentaenoic acid (EPA), to activate PPAR gamma (γ) signaling leading to meibocyte differentiation in human meibomian gland epithelial cell (hMGEC). HMGEC were exposed to EPA, alone and in combination with the speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ocular surface 2020-07, Vol.18 (3), p.427-437
Hauptverfasser: Kim, Sun Woong, Rho, Chang Rae, Kim, Jinseor, Xie, Yilu, Prince, Richard C., Mustafa, Khawla, Potma, Eric O., Brown, Donald J., Jester, James V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to access the ability of the natural PPAR agonist, eicosapentaenoic acid (EPA), to activate PPAR gamma (γ) signaling leading to meibocyte differentiation in human meibomian gland epithelial cell (hMGEC). HMGEC were exposed to EPA, alone and in combination with the specific PPARγ antagonist, T0070907, to selectively block PPARγ signaling. Expression of PPARγ response genes were evaluated by qPCR. Effect on cell cycle was evaluated using Ki-67 labelling and western blots. During differentiation, autophagy was monitored using the Autophagy Tandem Sensor (ATS) and LysoTracker. Lipid accumulation was characterized by Stimulated Raman Scattering microscopy (SRS) and neutral lipid staining in combination with ER-Tracker, LysoTracker, and ATS. Autophagy was also investigated using western blotting. Seahorse XF analysis was performed to monitor mitochondrial function. EPA specifically upregulated expression of genes related to lipid synthesis and induced cell cycle exit through reduced cyclin D1 expression and increased p21 and p27 expression. EPA also induced accumulation of lipid droplets in a time and dose dependent manner (P 
ISSN:1542-0124
1937-5913
DOI:10.1016/j.jtos.2020.04.012