Comprehensive Analysis of Novel Genes and Pathways Associated with Osteogenic Differentiation of Adipose Stem Cells

Background. Adipose-derived stem cells (ADSCs) are an important alternative source of mesenchymal stem cells (MSCs) and show great promise in tissue engineering and regenerative medicine applications. However, identifying the novel genes and pathways and finding the underlying mechanisms regulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disease markers 2022-09, Vol.2022, p.1-11
Hauptverfasser: Gao, Qiuni, Ma, Xiaorong, Qi, Zuoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Adipose-derived stem cells (ADSCs) are an important alternative source of mesenchymal stem cells (MSCs) and show great promise in tissue engineering and regenerative medicine applications. However, identifying the novel genes and pathways and finding the underlying mechanisms regulating ADSCs osteogenic differentiation remain urgent. Methods. We downloaded the gene expression profiles of GSE63754 and GSE37329 from the Gene Expression Omnibus (GEO) Database. We derived differentially expressed genes (DEGs) before and after ADSC osteogenic differentiation, followed by Gene Ontology (GO) functional and KEGG pathway analysis and protein-protein interaction (PPI) network analysis. 211 differentially expressed genes (142 upregulated genes and 69 downregulated genes) were aberrantly expressed. GO analysis revealed that these DEGs were associated with extracellular matrix organization, protein extracellular matrix, and semaphorin receptor binding. Conclusions. Our study provides novel genes and pathways that play important roles in regulating ADSC osteogenic differentiation, which may have potential therapeutic targets for clinic.
ISSN:0278-0240
1875-8630
DOI:10.1155/2022/4870981