Accurate prediction of virus-host protein-protein interactions via a Siamese neural network using deep protein sequence embeddings

Prediction and understanding of virus-host protein-protein interactions (PPIs) have relevance for the development of novel therapeutic interventions. In addition, virus-like particles open novel opportunities to deliver therapeutics to targeted cell types and tissues. Given our incomplete knowledge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Patterns (New York, N.Y.) N.Y.), 2022-09, Vol.3 (9), p.100551, Article 100551
Hauptverfasser: Madan, Sumit, Demina, Victoria, Stapf, Marcus, Ernst, Oliver, Fröhlich, Holger
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prediction and understanding of virus-host protein-protein interactions (PPIs) have relevance for the development of novel therapeutic interventions. In addition, virus-like particles open novel opportunities to deliver therapeutics to targeted cell types and tissues. Given our incomplete knowledge of PPIs on the one hand and the cost and time associated with experimental procedures on the other, we here propose a deep learning approach to predict virus-host PPIs. Our method (Siamese Tailored deep sequence Embedding of Proteins [STEP]) is based on recent deep protein sequence embedding techniques, which we integrate into a Siamese neural network. After showing the state-of-the-art performance of STEP on external datasets, we apply it to two use cases, severe acute respiratory syndrome coronavirus 2 and John Cunningham polyomavirus, to predict virus-host PPIs. Altogether our work highlights the potential of deep sequence embedding techniques originating from the field of NLP as well as explainable artificial intelligence methods for the analysis of biological sequences.
ISSN:2666-3899
2666-3899
DOI:10.1016/j.patter.2022.100551