Enhancer RNA commits osteogenesis via microRNA-3129 expression in human bone marrow-derived mesenchymal stem cells

Background Highly regulated gene expression program underlies osteogenesis of mesenchymal stem cells (MSCs), but the regulators in the program are not entirely identified. As enhancer RNAs (eRNAs) have recently emerged as a key regulator in gene expression, we assume a commitment of an eRNA in osteo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation and Regeneration 2022-09, Vol.42 (1), p.43-43, Article 43
Hauptverfasser: Nguyen, Anh Phuong, Yamagata, Kaoru, Iwata, Shigeru, Trimova, Gulzhan, Zhang, Tong, Shan, Yu, Nguyen, Mai-Phuong, Sonomoto, Koshiro, Nakayamada, Shingo, Kato, Shigeaki, Tanaka, Yoshiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Highly regulated gene expression program underlies osteogenesis of mesenchymal stem cells (MSCs), but the regulators in the program are not entirely identified. As enhancer RNAs (eRNAs) have recently emerged as a key regulator in gene expression, we assume a commitment of an eRNA in osteogenesis. Methods We performed in silico analysis to identify potential osteogenic microRNA (miRNA) gene predicted to be regulated by super-enhancers (SEs). SE inhibitor treatment and eRNA knocking-down were used to confirm the regulational mechanism of eRNA. miRNA function in osteogenesis was elucidated by miR mimic and inhibitor transfection experiments. Results miR-3129 was found to be located adjacent in a SE (osteoblast-specific SE_46171) specifically activated in osteoblasts by in silico analysis. A RT-quantitative PCR analysis of human bone marrow-derived MSC (hBMSC) cells showed that eRNA_2S was transcribed from the SE with the expression of miR-3129. Knockdown of eRNA_2S by locked nucleic acid as well as treatment of SE inhibitors JQ1 or THZ1 resulted in low miR-3129 levels. Overexpression of miR-3129 promoted hBMSC osteogenesis, while knockdown of miR-3129 inhibited hBMSC osteogenesis. Solute carrier family 7 member 11 (SLC7A11), encoding a bone formation suppressor, was upregulated following miR-3129-5p inhibition and identified as a target gene for miR-3129 during differentiation of hBMSCs into osteoblasts. Conclusions miR-3129 expression is regulated by SEs via eRNA_2S and this miRNA promotes hBMSC differentiation into osteoblasts through downregulating the target gene SLC7A11. Thus, the present study uncovers a commitment of an eRNA via a miR-3129/SLC7A11 regulatory pathway during osteogenesis of hBMSCs. Keywords: Super-enhancer, Enhancer RNA, miR-3129, Osteogenesis, Mesenchymal stem cells
ISSN:1880-8190
1880-9693
1880-8190
DOI:10.1186/s41232-022-00228-4