Removal of virus aerosols by the combination of filtration and UV-C irradiation

● The removal of virus aerosols by filtration and UV-C irradiation was proposed. ● The filtration efficiency for virus aerosols was affected by the filtration rate. ● The inactivation rate by UV-C was not linear with irradiation intensity or time. ● The virus trapped by filter material had a shieldi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of environmental science & engineering 2023-03, Vol.17 (3), p.27-27, Article 27
Hauptverfasser: Shang, Min, Kong, Yadong, Yang, Zhijuan, Cheng, Rong, Zheng, Xiang, Liu, Yi, Chen, Tongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:● The removal of virus aerosols by filtration and UV-C irradiation was proposed. ● The filtration efficiency for virus aerosols was affected by the filtration rate. ● The inactivation rate by UV-C was not linear with irradiation intensity or time. ● The virus trapped by filter material had a shielding effect on UV-C irradiation. The COVID-19 pandemic remains ever prevalent and afflicting—partially because one of its transmission pathways is aerosol. With the widely used central air conditioning systems worldwide, indoor virus aerosols can rapidly migrate, thus resulting in rapid infection transmission. It is therefore important to install microbial aerosol treatment units in the air conditioning systems, and we herein investigated the possibility of combining such filtration with UV irradiation to address virus aerosols. Results showed that the removal efficiency of filtration towards f2 and MS2 phages depended on the type of commercial filter material and the filtration speed, with an optimal velocity of 5 cm/s for virus removal. Additionally, it was found that UV irradiation had a significant effect on inactivating viruses enriched on the surfaces of filter materials; MS2 phages had greater resistance to UV-C irradiation than f2 phages. The optimal inactivation time for UV-C irradiation was 30 min, with higher irradiation times presenting no substantial increase in inactivation rate. Moreover, excessive virus enrichment on the filters decreased the inactivation effect. Timely inactivation is therefore recommended. In general, the combined system involving filtration with UV-C irradiation demonstrated a significant removal effect on virus aerosols. Moreover, the system is simple and economical, making it convenient for widespread implementation in air-conditioning systems.
ISSN:2095-2201
2095-221X
DOI:10.1007/s11783-023-1627-y