Effect of ECAP Route Type on the Microstructural Evolution, Crystallographic Texture, Electrochemical Behavior and Mechanical Properties of ZK30 Biodegradable Magnesium Alloy

In this study, billets of the ZK30 (Mg-3Zn-0.6 Zr-0.4 Mn, wt%) alloy were Equal Channel Angle Pressing (ECAP) processed for up to four passes of routes Bc (with rotating the sample 90° in the same direction between the subsequent passes), A (without sample rotation), and C (with sample rotating 180°...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-09, Vol.15 (17), p.6088
Hauptverfasser: Alateyah, Abdulrahman I., Alawad, Majed O., Aljohani, Talal A., El-Garaihy, Waleed H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, billets of the ZK30 (Mg-3Zn-0.6 Zr-0.4 Mn, wt%) alloy were Equal Channel Angle Pressing (ECAP) processed for up to four passes of routes Bc (with rotating the sample 90° in the same direction between the subsequent passes), A (without sample rotation), and C (with sample rotating 180°) after each pass at a temperature of 250 °C and a ram speed of 10 mm/min using a die with an internal channel angle of 90°. The microstructural evolution and the crystallographic texture were investigated using a Scanning Electron Microscope (SEM) equipped with the Electron Back-Scatter Diffraction (EBSD) technique. Corrosion measurements were conducted in ringer lactate which is a simulated body fluid. The Vickers microhardness test and tensile tests were conducted for the alloy before and after processing. The as-annealed billets exhibited a bimodal structure as fine grains (more than 3.39 µm) coexisted with almost-equiaxed coarse grains (less than 76.73 µm); the average grain size was 26.69 µm. Further processing until four passes resulted in enhanced grain refinement and full Dynamic Recrystallization (DRX). ECAP processing through 4-Bc, 4-A, and 4-C exhibited significant reductions in grain size until they reached 1.94 µm, 2.89 µm, and 2.25 µm, respectively. Four-pass processing also resulted in the transformation of low-angle grain boundaries into high-angle grain boundaries. The previous conclusion was drawn from observing the simultaneous decrease in the fraction of low-angle grain boundaries and an increase in the fraction of high-angle grain boundaries. The pole figures revealed that 4-Bc, 4-A, and 4-C reduced the maximum texture intensity of the as-annealed billets. The potentiodynamic polarization findings revealed that route Bc is the most effective route in improving the corrosion rate, whereas the Electrochemical Impedance Spectroscopy (EIS) revealed that routes A and Bc improved the corrosion resistance with nearly identical values. Finally, 4-Bc resulted in the highest increase in Vickers hardness, yield stress, and ultimate tensile strength with values of 80.8%, 19.3%, and 44.5%, alongside a 31% improvement in ductility, all compared to the AA condition.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15176088