Learn to Estimate Genetic Mutation and Microsatellite Instability with Histopathology H&E Slides in Colon Carcinoma

Colorectal cancer is one of the most common malignancies and the third leading cause of cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and estimating MSI status is closely related to the individualized therapeutic judgment and oncologic prognosis of CRC patients. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-08, Vol.14 (17), p.4144
Hauptverfasser: Guo, Yimin, Lyu, Ting, Liu, Shuguang, Zhang, Wei, Zhou, Youjian, Zeng, Chao, Wu, Guangming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer is one of the most common malignancies and the third leading cause of cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and estimating MSI status is closely related to the individualized therapeutic judgment and oncologic prognosis of CRC patients. In this study, we introduce a cascaded network framework with an average voting ensemble strategy to sequentially identify the tumor regions and predict gene mutations & MSI status from whole-slide H&E images. Experiments on a colorectal cancer dataset indicate that the proposed method can achieve higher fidelity in both gene mutation prediction and MSI status estimation. In the testing set, our method achieves 0.792, 0.886, 0.897, and 0.764 AUCs for KRAS, NRAS, BRAF, and MSI, respectively. The results suggest that the deep convolutional networks have the potential to provide diagnostic insight and clinical guidance directly from pathological H&E slides.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers14174144