Competition between CO2‑philicity and Mixing Entropy Leads to CO2 Solubility Maximum in Polyether Polyols
In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethanecommonly used for thermal insulation, acoustic insulation, and cushioningwhich increasin...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2022-08, Vol.61 (34), p.12835-12844 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethanecommonly used for thermal insulation, acoustic insulation, and cushioningwhich increasingly relies on CO2 to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO2. While previous studies have suggested the importance of the effect of hydroxyl end groups on CO2 solubility in short polyols (2 hydroxyls per chain)as are commonly used in polyurethane foamshas not been reported. Here, we show that the solubility of CO2 in polyether polyols decreases with molecular weight above 1000 g/mol and decreases with functionality using measurements performed by gravimetry-axisymmetric drop-shape analysis. The nonmonotonic effect of molecular weight on CO2 solubility results from the competition between effects that reduce CO2 solubility (lower mixing entropy) and effects that increase CO2 solubility (lower ratio of hydroxyl end groups to ether backbone groups). To generalize our measurements, we modeled the CO2 solubility using a perturbed chain-statistical associating fluid theory (PC-SAFT) model, which we validated by showing that a density functional theory model based on the PC-SAFT free energy accurately predicted the interfacial tension. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.2c02396 |