Competition between CO2‑philicity and Mixing Entropy Leads to CO2 Solubility Maximum in Polyether Polyols

In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethanecommonly used for thermal insulation, acoustic insulation, and cushioningwhich increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-08, Vol.61 (34), p.12835-12844
Hauptverfasser: Ylitalo, Andrew S., Chao, Huikuan, Walker, Pierre J., Crosthwaite, Jacob, Fitzgibbons, Thomas C., Ginzburg, Valeriy G., Zhou, Weijun, Wang, Zhen-Gang, Di Maio, Ernesto, Kornfield, Julia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethanecommonly used for thermal insulation, acoustic insulation, and cushioningwhich increasingly relies on CO2 to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO2. While previous studies have suggested the importance of the effect of hydroxyl end groups on CO2 solubility in short polyols (2 hydroxyls per chain)as are commonly used in polyurethane foamshas not been reported. Here, we show that the solubility of CO2 in polyether polyols decreases with molecular weight above 1000 g/mol and decreases with functionality using measurements performed by gravimetry-axisymmetric drop-shape analysis. The nonmonotonic effect of molecular weight on CO2 solubility results from the competition between effects that reduce CO2 solubility (lower mixing entropy) and effects that increase CO2 solubility (lower ratio of hydroxyl end groups to ether backbone groups). To generalize our measurements, we modeled the CO2 solubility using a perturbed chain-statistical associating fluid theory (PC-SAFT) model, which we validated by showing that a density functional theory model based on the PC-SAFT free energy accurately predicted the interfacial tension.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.2c02396