Resistance Evolution against Host-directed Antiviral Agents: Buffalopox Virus Switches to Use p38-ϒ under Long-term Selective Pressure of an Inhibitor Targeting p38-α

Abstract Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2022-09, Vol.39 (9)
Hauptverfasser: Chander, Yogesh, Kumar, Ram, Verma, Assim, Khandelwal, Nitin, Nagori, Himanshu, Singh, Namita, Sharma, Shalini, Pal, Yash, Puvar, Apurvasinh, Pandit, Rameshchandra, Shukla, Nitin, Chavada, Priyank, Tripathi, Bhupendra N, Barua, Sanjay, Kumar, Naveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.
ISSN:0737-4038
1537-1719
DOI:10.1093/molbev/msac177