RAD51 Inhibitor and Radiation Toxicity in Vestibular Schwannoma

Objective To describe the RAD51 response (DNA repair) to radiation-induced DNA damage in patient-derived vestibular schwannoma (VS) cells and investigate the utility of RAD51 inhibitor (RI-1) in enhancing radiation toxicity. Study Design Basic and translational science. Setting Tertiary academic fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Otolaryngology-head and neck surgery 2022-11, Vol.167 (5), p.860-868
Hauptverfasser: Thielhelm, Torin P., Nourbakhsh, Aida, Welford, Scott M., Mellon, Eric A., Bracho, Olena, Ivan, Michael E., Telischi, Fred, Fernandez-Valle, Cristina, Dinh, Christine T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To describe the RAD51 response (DNA repair) to radiation-induced DNA damage in patient-derived vestibular schwannoma (VS) cells and investigate the utility of RAD51 inhibitor (RI-1) in enhancing radiation toxicity. Study Design Basic and translational science. Setting Tertiary academic facility. Methods VS tumors (n = 10) were cultured on 96-well plates and 16-well slides, exposed to radiation (0, 6, 12, or 18 Gy), and treated with RI-1 (0, 5, or 10 µM). Immunofluorescence was performed at 6 hours for γ-H2AX (DNA damage marker), RAD51 (DNA repair protein), and p21 (cell cycle arrest protein). Viability assays were performed at 96 hours, and capillary Western blotting was utilized to determine RAD51 expression in naïve VS tumors (n = 5). Results VS tumors expressed RAD51. In cultured VS cells, radiation initiated dose-dependent increases in γ-H2AX and p21 expression. VS cells upregulated RAD51 to repair DNA damage following radiation. Addition of RI-1 reduced RAD51 expression in a dose-dependent manner and was associated with increased γ-H2AX levels and decreased viability in a majority of cultured VS tumors. Conclusion VS may evade radiation injury by entering cell cycle arrest and upregulating RAD51-dependent repair of radiation-induced double-stranded breaks in DNA. Although there was variability in responses among individual primary VS cells, RAD51 inhibition with RI-1 reduced RAD51-dependent DNA repair to enhance radiation toxicity in VS cells. Further investigations are warranted to understand the mechanisms of radiation resistance in VS and determine whether RI-1 is an effective radiosensitizer in patients with VS.
ISSN:0194-5998
1097-6817
DOI:10.1177/01945998221083506