Assessment of deep learning assistance for the pathological diagnosis of gastric cancer
Previous studies on deep learning (DL) applications in pathology have focused on pathologist-versus-algorithm comparisons. However, DL will not replace the breadth and contextual knowledge of pathologists; rather, only through their combination may the benefits of DL be achieved. A fully crossed mul...
Gespeichert in:
Veröffentlicht in: | Modern pathology 2022-09, Vol.35 (9), p.1262-1268 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies on deep learning (DL) applications in pathology have focused on pathologist-versus-algorithm comparisons. However, DL will not replace the breadth and contextual knowledge of pathologists; rather, only through their combination may the benefits of DL be achieved. A fully crossed multireader multicase study was conducted to evaluate DL assistance with pathologists' diagnosis of gastric cancer. A total of 110 whole-slide images (WSI) (50 malignant and 60 benign) were interpreted by 16 board-certified pathologists with or without DL assistance, with a washout period between sessions. DL-assisted pathologists achieved a higher area under receiver operating characteristic curve (ROC-AUC) (0.911 vs. 0.863, P = 0.003) than unassisted in interpreting the 110 WSIs. Pathologists with DL assistance demonstrated higher sensitivity in detection of gastric cancer than without (90.63% vs. 82.75%, P = 0.010). No significant difference was observed in specificity with or without deep learning assistance (78.23% vs. 79.90%, P = 0.468). The average review time per WSI was shortened with DL assistance than without (22.68 vs. 26.37 second, P = 0.033). Our results demonstrated that DL assistance indeed improved pathologists' accuracy and efficiency in gastric cancer diagnosis and further boosted the acceptance of this new technique. |
---|---|
ISSN: | 0893-3952 1530-0285 |
DOI: | 10.1038/s41379-022-01073-z |