Asymmetric De Novo Synthesis of a Cucurbitane Triterpenoid: Total Synthesis of Octanorcucurbitacin B
The asymmetric de novo synthesis of a cucurbitane natural product, octanorcucurbitacin B, has been accomplished. Cucurbitanes are a family of structurally complex triterpenoids that characteristically contain three stereodefined quaternary centers at ring fusion carbons positioned about their tetrac...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-05, Vol.144 (19), p.8493-8497 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The asymmetric de novo synthesis of a cucurbitane natural product, octanorcucurbitacin B, has been accomplished. Cucurbitanes are a family of structurally complex triterpenoids that characteristically contain three stereodefined quaternary centers at ring fusion carbons positioned about their tetracyclic skeletons (at positions 9, 13, and 14). Taking a diversion from the biosynthetic hypothesis for cucurbitane synthesis, the approach established here provides direct access to the cucurbitane skeleton without having to proceed by way of a lanostane. Using a simple chiral enyne as starting material, a sequence of annulative cross-coupling and intramolecular Heck reaction provides a stereodefined polyunsaturated tetracycle possessing the C9 and C13 quaternary centers. This intermediate was converted to octanorcucurbitacin B through a 12-step sequence that features hydroxy-directed Simmons–Smith cyclopropanation, regioselective deconjugative alkylation, and allylic oxidation. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c03109 |