Effect of fecal microbiota transplantation on the TGF-β1/Smad signaling pathway in rats with TNBS-induced colitis

BackgroundTraditional treatments for inflammatory bowel disease (IBD) have adverse side effects, and patients who receive such treatments have high recurrence rates. Fecal microbiota transplantation (FMT) has become an increasingly popular therapeutic option for patients with IBD. However, the mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of translational medicine 2022-08, Vol.10 (15), p.825-825
Hauptverfasser: Qiu, Jinlang, Wu, Caixian, Gao, Qianyu, Li, Sheng, Li, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BackgroundTraditional treatments for inflammatory bowel disease (IBD) have adverse side effects, and patients who receive such treatments have high recurrence rates. Fecal microbiota transplantation (FMT) has become an increasingly popular therapeutic option for patients with IBD. However, the mechanism by which FMT alleviates this disease remains unclear. MethodsIn this study, a rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis was established and used to explore whether the transforming growth factor-beta 1 (TGF-β1)/small mothers against decapentaplegic (Smad) signaling pathway plays a critical role in the FMT alleviation of IBD. ResultsAfter the FMT intervention, the disease activity index and histologic scores were significantly decreased. In addition, the TGF-β1 expression level in the FMT group was significantly decreased by approximately 0.72-fold relative to the level in the TNBS colitis group, whereas the Smad3, Smad4, and Smad7 expression levels had increased by approximately 1.21, 1.40, and 1.18 folds, respectively. Similarly, SB431542 inhibited the expression of TGF-β1 and promoted the expression of Smad3, Smad4, and Smad7. Further, the serum levels of the inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly decreased, whereas that of the interferon-gamma (IFN-γ) was not significantly changed after the FMT intervention. ConclusionsThese results suggest that FMT inhibits the TGF-β1/Smad signaling pathway to attenuate inflammation.
ISSN:2305-5839
2305-5839
DOI:10.21037/atm-22-3227