Framework for lumen-based nonrigid tomographic coregistration of intravascular images
Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistrati...
Gespeichert in:
Veröffentlicht in: | Journal of medical imaging (Bellingham, Wash.) Wash.), 2022-07, Vol.9 (4), p.044006-044006 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044006 |
---|---|
container_issue | 4 |
container_start_page | 044006 |
container_title | Journal of medical imaging (Bellingham, Wash.) |
container_volume | 9 |
creator | Karmakar, Abhishek Olender, Max L. Marlevi, David Shlofmitz, Evan Shlofmitz, Richard A. Edelman, Elazer R. Nezami, Farhad R. |
description | Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature.
Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images.
Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29 ± 0.14 mm ( |
doi_str_mv | 10.1117/1.JMI.9.4.044006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9402451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708736373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-1aad2bdaaed3f2a47f31b096a9a4e4fb8075ae670f54066f2133e0b3f79bf32e3</originalsourceid><addsrcrecordid>eNp1UT1PwzAQjRCIVtCdMSNLwvmjSbMgoYpPFbHAbF2Sc2pI4mInVPx7jFohGJh89nv3nu9eFJ0xSBlj-QVLHx7v0yKVKUgJkB1EUy54kUjB4PCnBj6JZt6_AgBjMOdMHkcTkUFABJ9GLzcOO9pa9xZr6-J27KhPSvRUx73tnWlMHQ-2s43DzdpUcWUdNcYPDgdj-9jq2PTh8oG-Glt0semwIX8aHWlsPc3250nwuX5e3iWrp9v75dUqqaQshoQh1rysEakWmqPMtWAlFBkWKEnqcgH5HCnLQc8lZJnmTAiCUui8KLXgJE6iZKfrt7QZS7Vxwd99KotG7Z_eQkVKzsPGFoF_ueMHpKO6ou-_t3_a_iK9WavGfqhCAg8aQeB8L-Ds-0h-UJ3xFbUt9mRHr3gOi1xkIheBCjtq5az3jvSPDQP1HaBiKgSoCiXVLsBf42wMqVc7uj5s73_-F2kfnhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708736373</pqid></control><display><type>article</type><title>Framework for lumen-based nonrigid tomographic coregistration of intravascular images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central</source><creator>Karmakar, Abhishek ; Olender, Max L. ; Marlevi, David ; Shlofmitz, Evan ; Shlofmitz, Richard A. ; Edelman, Elazer R. ; Nezami, Farhad R.</creator><creatorcontrib>Karmakar, Abhishek ; Olender, Max L. ; Marlevi, David ; Shlofmitz, Evan ; Shlofmitz, Richard A. ; Edelman, Elazer R. ; Nezami, Farhad R.</creatorcontrib><description>Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature.
Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images.
Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29 ± 0.14 mm (<2 longitudinal image frames) and 0.18 ± 0.16 mm (<1 frame) for multimodal and interventional datasets, respectively. Angular registration for the interventional dataset rendered errors of 7.7 ° ± 6.7 ° , and 29.1 ° ± 23.2 ° for the multimodal set.
Conclusions: Satisfactory results across datasets, along with additional attributes such as the ability to avoid longitudinal over-fitting and correct nonlinear catheter rotation during nonrigid rotational registration, highlight the potential wide-ranging applicability of our presented coregistration method.</description><identifier>ISSN: 2329-4302</identifier><identifier>EISSN: 2329-4310</identifier><identifier>DOI: 10.1117/1.JMI.9.4.044006</identifier><identifier>PMID: 36043032</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><subject>Image Processing</subject><ispartof>Journal of medical imaging (Bellingham, Wash.), 2022-07, Vol.9 (4), p.044006-044006</ispartof><rights>2022 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><rights>2022 Society of Photo-Optical Instrumentation Engineers (SPIE) 2022 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-1aad2bdaaed3f2a47f31b096a9a4e4fb8075ae670f54066f2133e0b3f79bf32e3</citedby><cites>FETCH-LOGICAL-c449t-1aad2bdaaed3f2a47f31b096a9a4e4fb8075ae670f54066f2133e0b3f79bf32e3</cites><orcidid>0000-0002-0936-5300 ; 0000-0001-7131-7636 ; 0000-0002-7832-7156 ; 0000-0002-0907-5258 ; 0000-0002-4210-3177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402451/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402451/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,551,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:236043032$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Karmakar, Abhishek</creatorcontrib><creatorcontrib>Olender, Max L.</creatorcontrib><creatorcontrib>Marlevi, David</creatorcontrib><creatorcontrib>Shlofmitz, Evan</creatorcontrib><creatorcontrib>Shlofmitz, Richard A.</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><creatorcontrib>Nezami, Farhad R.</creatorcontrib><title>Framework for lumen-based nonrigid tomographic coregistration of intravascular images</title><title>Journal of medical imaging (Bellingham, Wash.)</title><addtitle>J. Med. Imag</addtitle><description>Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature.
Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images.
Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29 ± 0.14 mm (<2 longitudinal image frames) and 0.18 ± 0.16 mm (<1 frame) for multimodal and interventional datasets, respectively. Angular registration for the interventional dataset rendered errors of 7.7 ° ± 6.7 ° , and 29.1 ° ± 23.2 ° for the multimodal set.
Conclusions: Satisfactory results across datasets, along with additional attributes such as the ability to avoid longitudinal over-fitting and correct nonlinear catheter rotation during nonrigid rotational registration, highlight the potential wide-ranging applicability of our presented coregistration method.</description><subject>Image Processing</subject><issn>2329-4302</issn><issn>2329-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp1UT1PwzAQjRCIVtCdMSNLwvmjSbMgoYpPFbHAbF2Sc2pI4mInVPx7jFohGJh89nv3nu9eFJ0xSBlj-QVLHx7v0yKVKUgJkB1EUy54kUjB4PCnBj6JZt6_AgBjMOdMHkcTkUFABJ9GLzcOO9pa9xZr6-J27KhPSvRUx73tnWlMHQ-2s43DzdpUcWUdNcYPDgdj-9jq2PTh8oG-Glt0semwIX8aHWlsPc3250nwuX5e3iWrp9v75dUqqaQshoQh1rysEakWmqPMtWAlFBkWKEnqcgH5HCnLQc8lZJnmTAiCUui8KLXgJE6iZKfrt7QZS7Vxwd99KotG7Z_eQkVKzsPGFoF_ueMHpKO6ou-_t3_a_iK9WavGfqhCAg8aQeB8L-Ds-0h-UJ3xFbUt9mRHr3gOi1xkIheBCjtq5az3jvSPDQP1HaBiKgSoCiXVLsBf42wMqVc7uj5s73_-F2kfnhA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Karmakar, Abhishek</creator><creator>Olender, Max L.</creator><creator>Marlevi, David</creator><creator>Shlofmitz, Evan</creator><creator>Shlofmitz, Richard A.</creator><creator>Edelman, Elazer R.</creator><creator>Nezami, Farhad R.</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-0936-5300</orcidid><orcidid>https://orcid.org/0000-0001-7131-7636</orcidid><orcidid>https://orcid.org/0000-0002-7832-7156</orcidid><orcidid>https://orcid.org/0000-0002-0907-5258</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid></search><sort><creationdate>20220701</creationdate><title>Framework for lumen-based nonrigid tomographic coregistration of intravascular images</title><author>Karmakar, Abhishek ; Olender, Max L. ; Marlevi, David ; Shlofmitz, Evan ; Shlofmitz, Richard A. ; Edelman, Elazer R. ; Nezami, Farhad R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-1aad2bdaaed3f2a47f31b096a9a4e4fb8075ae670f54066f2133e0b3f79bf32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karmakar, Abhishek</creatorcontrib><creatorcontrib>Olender, Max L.</creatorcontrib><creatorcontrib>Marlevi, David</creatorcontrib><creatorcontrib>Shlofmitz, Evan</creatorcontrib><creatorcontrib>Shlofmitz, Richard A.</creatorcontrib><creatorcontrib>Edelman, Elazer R.</creatorcontrib><creatorcontrib>Nezami, Farhad R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karmakar, Abhishek</au><au>Olender, Max L.</au><au>Marlevi, David</au><au>Shlofmitz, Evan</au><au>Shlofmitz, Richard A.</au><au>Edelman, Elazer R.</au><au>Nezami, Farhad R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for lumen-based nonrigid tomographic coregistration of intravascular images</atitle><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle><addtitle>J. Med. Imag</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>044006</spage><epage>044006</epage><pages>044006-044006</pages><issn>2329-4302</issn><eissn>2329-4310</eissn><abstract>Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature.
Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images.
Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29 ± 0.14 mm (<2 longitudinal image frames) and 0.18 ± 0.16 mm (<1 frame) for multimodal and interventional datasets, respectively. Angular registration for the interventional dataset rendered errors of 7.7 ° ± 6.7 ° , and 29.1 ° ± 23.2 ° for the multimodal set.
Conclusions: Satisfactory results across datasets, along with additional attributes such as the ability to avoid longitudinal over-fitting and correct nonlinear catheter rotation during nonrigid rotational registration, highlight the potential wide-ranging applicability of our presented coregistration method.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>36043032</pmid><doi>10.1117/1.JMI.9.4.044006</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0936-5300</orcidid><orcidid>https://orcid.org/0000-0001-7131-7636</orcidid><orcidid>https://orcid.org/0000-0002-7832-7156</orcidid><orcidid>https://orcid.org/0000-0002-0907-5258</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-4302 |
ispartof | Journal of medical imaging (Bellingham, Wash.), 2022-07, Vol.9 (4), p.044006-044006 |
issn | 2329-4302 2329-4310 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9402451 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central |
subjects | Image Processing |
title | Framework for lumen-based nonrigid tomographic coregistration of intravascular images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20lumen-based%20nonrigid%20tomographic%20coregistration%20of%20intravascular%20images&rft.jtitle=Journal%20of%20medical%20imaging%20(Bellingham,%20Wash.)&rft.au=Karmakar,%20Abhishek&rft.date=2022-07-01&rft.volume=9&rft.issue=4&rft.spage=044006&rft.epage=044006&rft.pages=044006-044006&rft.issn=2329-4302&rft.eissn=2329-4310&rft_id=info:doi/10.1117/1.JMI.9.4.044006&rft_dat=%3Cproquest_pubme%3E2708736373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708736373&rft_id=info:pmid/36043032&rfr_iscdi=true |