Framework for lumen-based nonrigid tomographic coregistration of intravascular images
Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistrati...
Gespeichert in:
Veröffentlicht in: | Journal of medical imaging (Bellingham, Wash.) Wash.), 2022-07, Vol.9 (4), p.044006-044006 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature.
Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images.
Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29 ± 0.14 mm ( |
---|---|
ISSN: | 2329-4302 2329-4310 |
DOI: | 10.1117/1.JMI.9.4.044006 |