Framework for lumen-based nonrigid tomographic coregistration of intravascular images

Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical imaging (Bellingham, Wash.) Wash.), 2022-07, Vol.9 (4), p.044006-044006
Hauptverfasser: Karmakar, Abhishek, Olender, Max L., Marlevi, David, Shlofmitz, Evan, Shlofmitz, Richard A., Edelman, Elazer R., Nezami, Farhad R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature. Approach: Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images. Results: Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors—evaluated throughout the paired tomographic sequences—of 0.29  ±  0.14  mm (
ISSN:2329-4302
2329-4310
DOI:10.1117/1.JMI.9.4.044006