Predicting Mismatch-Repair Status in Rectal Cancer Using Multiparametric MRI-Based Radiomics Models: A Preliminary Study
Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and validated machine learning radiomics models f...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2022-08, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and validated machine learning radiomics models for predicting MMR status in patients directly on preoperative MRI scans. Pathologically confirmed RC cases administered surgical resection in two distinct hospitals were examined in this retrospective trial. Totally, 78 and 33 cases were included in the training and test sets, respectively. Then, 65 cases were enrolled as an external validation set. Radiomics features were obtained from preoperative rectal MR images comprising T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI), and combined multisequences. Four optimal features related to MMR status were selected by the least absolute shrinkage and selection operator (LASSO) method. Support vector machine (SVM) learning was adopted to establish four predictive models, i.e., ModelT2WI, ModelDWI, ModelCE-T1WI, and Modelcombination, whose diagnostic performances were determined and compared by receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Modelcombination had better diagnostic performance compared with the other models in all datasets (all p |
---|---|
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2022/6623574 |