Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries
BACKGROUNDGalactose-deficient immunoglobulin A1 (Gd-IgA1) plays a crucial role in the development of IgA nephropathy (IgAN). However, the pathological role of Gd-IgA1-containing immune complexes (ICs) and the mechanism of deposition in the mesangial region remain unclear. METHODSTo examine the depos...
Gespeichert in:
Veröffentlicht in: | Nephrology, dialysis, transplantation dialysis, transplantation, 2022-08, Vol.37 (9), p.1629-1636 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUNDGalactose-deficient immunoglobulin A1 (Gd-IgA1) plays a crucial role in the development of IgA nephropathy (IgAN). However, the pathological role of Gd-IgA1-containing immune complexes (ICs) and the mechanism of deposition in the mesangial region remain unclear. METHODSTo examine the deposition of Gd-IgA1-containing ICs in the mesangial region through glomerular endothelial cell injury, we evaluated the alteration of renal microvascular endothelial glycocalyx in nude mice injected with Gd-IgA1-IgG ICs. Human renal glomerular endothelial cells (HRGECs) were used to assess the potential capacity of Gd-IgA1-IgG ICs to activate endothelial cells. RESULTSNude mice injected with Gd-IgA1-containing ICs showed podocyte and endothelial cell injuries, with IgA, IgG and C3 depositions in glomerular capillaries and the mesangium. Moreover, albuminuria and hematuria were induced. Real-time glycocalyx imaging showed that renal microvascular glycocalyx was decreased immediately after injection of Gd-IgA1-containing ICs and then mesangial IgA deposition was increased. After coculture of Gd-IgA1-containing ICs with HRGECs, messenger RNA expression levels of endothelial adhesion molecules and proinflammatory mediators were upregulated significantly. CONCLUSIONGd-IgA1-IgG ICs had a high affinity for glomerular endothelial cells, which resulted in glomerular filtration barrier dysfunction mediated by glycocalyx loss. Furthermore, Gd-IgA1-IgG ICs accelerated the production of adhesion factors and proinflammatory cytokines in glomerular endothelial cells. The glomerular endothelial cell injury induced by Gd-IgA1-containing ICs may enhance the permeability of Igs in the mesangial region and subsequent inflammatory responses in the pathogenesis of IgAN. |
---|---|
ISSN: | 0931-0509 1460-2385 |
DOI: | 10.1093/ndt/gfac204 |