3D printer particle emissions: Translation to internal dose in adults and children

Desktop fused deposition modeling (FDM®) three-dimensional (3D) printers are becoming increasingly popular in schools, libraries, and among home hobbyists. FDM® 3D printers have been shown to release ultrafine airborne particles in large amounts, indicating the potential for inhalation exposure and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aerosol science 2021-05, Vol.154, p.105765-12, Article 105765
Hauptverfasser: Byrley, Peter, Boyes, William K., Rogers, Kim, Jarabek, Annie M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Desktop fused deposition modeling (FDM®) three-dimensional (3D) printers are becoming increasingly popular in schools, libraries, and among home hobbyists. FDM® 3D printers have been shown to release ultrafine airborne particles in large amounts, indicating the potential for inhalation exposure and consequent health risks among FDM® 3D printer users and other room occupants including children. These particles are generated from the heating of thermoplastic polymer feedstocks during the FDM® 3D printing process, with the most commonly used polymers being acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA). Risk assessment of these exposures demands estimation of internal dose, especially to address intra-human variability across life stages. Dosimetry models have proven to effectively translate particle exposures to internal dose metrics relevant to evaluation of their effects in the respiratory tract. We used the open-access multiple path particle dosimetry (MPPD v3.04) model to estimate inhaled particle deposition in different regions of the respiratory tract for children of various age groups from three months to eighteen years old adults. Mass concentration data for input into the MPPD model were calculated using particle size distribution and density data from experimental FDM® 3D printer emissions tests using both ABS and PLA. The impact of changes in critical parameters that are principal determinants of inhaled dose, including: sex, age, and exposure duration, was examined using input parameter values available from the International Commission on Radiological Protection. Internal dose metrics used included regional mass deposition, mass deposition normalized by pulmonary surface area, surface area of deposited particles by pulmonary surface area, and retained regional mass. Total mass deposition was found to be highest in the 9-year-old to 18-year-old age groups with mass deposition by pulmonary surface area highest in 3-month-olds to 9-year-olds and surface area of deposited particles by pulmonary surface area to be highest in 9-year-olds. Clearance modeling revealed that frequent 3D printer users are at risk for an increased cumulative retained dose. •3D printer particle emissions show different size distributions using ABS and PLA.•MPPD model supports translation of 3D particle emissions to internal dose metric(s).•Predicted deposited particle mass differs by respiratory region.•Dose metrics demonstrate important differences across
ISSN:0021-8502
1879-1964
DOI:10.1016/j.jaerosci.2021.105765