The analgesic effects of β-elemene in rats with neuropathic pain by inhibition of spinal astrocytic ERK activation
Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dors...
Gespeichert in:
Veröffentlicht in: | Molecular pain 2022-08, Vol.18, p.17448069221121562-17448069221121562 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. Intraperitoneal injection (i.p.) of β-elemene was administered for 21 consecutive days. Mechanical allodynia was explored by von Frey filaments. The activation of the mitogen-activated protein kinase (MAPK) family (including ERK, p38, and JNK) in spinal neurons, astrocytes, and microglia was evaluated using immunostaining 29 days after SNI surgery. The expression of GFAP, Iba-1, p-ERK, p-JNK, and p-p38 within the SDH was measured using immunoblotting. The levels of proinflammatory cytokines (including TNF-α, IL-1β, and IL-6) were measured with ELISA. The levels of oxidative stress indicators (including MDA, SOD, and GSH-PX) were detected using biochemical tests. Consecutive i.p. administration of β-elemene relieved SNI-induced mechanical allodynia (with an EC50 of 16.40 mg/kg). SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. β-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. β-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. β-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that β-elemene might be a promising analgesic for the treatment of chronic pain. |
---|---|
ISSN: | 1744-8069 1744-8069 |
DOI: | 10.1177/17448069221121562 |