Temporal and spatial summation of laser heat stimuli in cultured nociceptive neurons of the rat
We studied the efficacy of a near-infrared laser (1475 nm) to activate rat dorsal root ganglion (DRG) neurons with short punctate radiant heat pulses (55 µm diameter) and investigated temporal and spatial summation properties for the transduction process for noxious heat at a subcellular level. Stre...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2022-09, Vol.474 (9), p.1003-1019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the efficacy of a near-infrared laser (1475 nm) to activate rat dorsal root ganglion (DRG) neurons with short punctate radiant heat pulses (55 µm diameter) and investigated temporal and spatial summation properties for the transduction process for noxious heat at a subcellular level. Strength-duration curves (10–80 ms range) indicated a minimum power of 30.2mW for the induction of laser-induced calcium transients and a chronaxia of 13.9 ms. However, threshold energy increased with increasing stimulus duration suggesting substantial radial cooling of the laser spot. Increasing stimulus duration demonstrated suprathreshold intensity coding of calcium transients with less than linear gains (Stevens exponents 0.29/35mW, 0.38/60mW, 0.46/70mW). The competitive TRPV1 antagonist capsazepine blocked responses to short near-threshold stimuli and significantly reduced responses to longer duration suprathreshold heat. Heating 1/3 of the soma of a neuron was sufficient to induce calcium transients significantly above baseline (
p
|
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/s00424-022-02728-1 |