A Novel Benchmark Dataset for COVID-19 Detection during Third Wave in Pakistan
Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consu...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2022-08, Vol.2022, p.6354579-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronavirus (COVID-19) is a highly severe infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). The polymerase chain reaction (PCR) test is essential to confirm the COVID-19 infection, but it has certain limitations, including paucity of reagents, is computationally time-consuming, and requires expert clinicians. Clinicians suggest that the PCR test is not a reliable automated COVID-19 patient detection system. This study proposed a machine learning-based approach to evaluate the PCR role in COVID-19 detection. We collect real data containing 603 COVID-19 samples from the Pakistan Institute of Medical Sciences (PIMS) Hospital in Islamabad, Pakistan, during the third COVID-19 wave. The experiments are separated into two sets. The first set comprises 24 features, including PCR test results, whereas the second comprises 24 features without PCR test. The findings demonstrate that the decision tree achieves the best detection rate for positive and negative COVID-19 patients in both scenarios. The findings reveal that PCR does not contribute to detecting COVID-19 patients. The findings also aid in the early detection of COVID-19, mainly when PCR test results are insufficient for diagnosing COVID-19 and help developing countries with a paucity of PCR tests and specialist facilities. |
---|---|
ISSN: | 1687-5265 1687-5273 1687-5273 |
DOI: | 10.1155/2022/6354579 |