The "green" form I ribulose 1,5-bisphosphate carboxylase/oxygenase from the nonsulfur purple bacterium Rhodobacter capsulatus

Form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of the Calvin-Benson-Bassham cycle may be divided into two broad phylogenetic groups, referred to as red-like and green-like, based on deduced large subunit amino acid sequences. Unlike the form I enzyme from the closely related organi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology 1999-07, Vol.181 (13), p.3935-3941
Hauptverfasser: Horken, K M, Tabita, F R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of the Calvin-Benson-Bassham cycle may be divided into two broad phylogenetic groups, referred to as red-like and green-like, based on deduced large subunit amino acid sequences. Unlike the form I enzyme from the closely related organism Rhodobacter sphaeroides, the form I RubisCO from R. capsulatus is a member of the green-like group and closely resembles the enzyme from certain chemoautotrophic proteobacteria and cyanobacteria. As the enzymatic properties of this type of RubisCO have not been well studied in a system that offers facile genetic manipulation, we purified the R. capsulatus form I enzyme and determined its basic kinetic properties. The enzyme exhibited an extremely low substrate specificity factor, which is congruent with its previously determined sequence similarity to form I enzymes from chemoautotrophs and cyanobacteria. The enzymological results reported here are thus strongly supportive of the previously suggested horizontal gene transfer that most likely occurred between a green-like RubisCO-containing bacterium and a predecessor to R. capsulatus. Expression results from hybrid and chimeric enzyme plasmid constructs, made with large and small subunit genes from R. capsulatus and R. sphaeroides, also supported the unrelatedness of these two enzymes and were consistent with the recently proposed phylogenetic placement of R. capsulatus form I RubisCO. The R. capsulatus form I enzyme was found to be subject to a time-dependent fallover in activity and possessed a high affinity for CO2, unlike the closely similar cyanobacterial RubisCO, which does not exhibit fallover and possesses an extremely low affinity for CO2. These latter results suggest definite approaches to elucidate the molecular basis for fallover and CO2 affinity.
ISSN:0021-9193
1098-5530
DOI:10.1128/JB.181.13.3935-3941.1999