Lipid A Variants Activate Human TLR4 and the Noncanonical Inflammasome Differently and Require the Core Oligosaccharide for Inflammasome Activation

Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and immunity 2022-08, Vol.90 (8), p.e0020822
Hauptverfasser: Alexander-Floyd, Jasmine, Bass, Antonia R, Harberts, Erin M, Grubaugh, Daniel, Buxbaum, Joseph D, Brodsky, Igor E, Ernst, Robert K, Shin, Sunny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.
ISSN:0019-9567
1098-5522
1098-5522
DOI:10.1128/iai.00208-22