Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynam...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (32), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 32 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Bueno, Carlos Lu, Wei Wang, Qian Chen, Mingchen Chen, Xun Wolynes, Peter G. Gao, Yang |
description | Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation. |
doi_str_mv | 10.1073/pnas.2202239119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27171417</jstor_id><sourcerecordid>27171417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-734bf1b5f5b06a9771d68aa8c2d19ce3d6ff2e0ab30b2ab7c42bab10d60474cc3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRMoEpde0o4_Eq8vSNW2QKUKLuVsjR1nk5UTBzup6H-PV1sW6GXmML_3NDOPkHcULihIfjmNmC4YA8a4olS9ICsKipa1UPCSrACYLNeCiRNymtIOAFS1htfkhFeKCiqqFTGbMEzLjHMfRvT-sXC_Jh9iP26LuXPF4GyHY5-GIrSFQTu72Iepw60r7mWxnUTROd9bTK6YI47JB5utshh9yDWl629Xb8irFn1yb5_6Gfnx-eZ-87W8-_7ldnN1V1oh-FxKLkxLTdVWBmpUUtKmXiOuLWuoso43ddsyB2g4GIZGWsEMGgpNDUIKa_kZ-XTwnRYzuMa6Ma_k9RT7AeOjDtjr_ydj3-lteNCKS1ormg3Onwxi-Lm4NOuhT9Z5j6MLS9KsVpLXslYqox-fobuwxPzBTEkAqTiDPXV5oGwMKUXXHpehoPf56X1--m9-WfHh3xuO_J_AMvD-AOzSHOJxziSVGZD8NzZ-ook</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700793209</pqid></control><display><type>article</type><title>Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bueno, Carlos ; Lu, Wei ; Wang, Qian ; Chen, Mingchen ; Chen, Xun ; Wolynes, Peter G. ; Gao, Yang</creator><creatorcontrib>Bueno, Carlos ; Lu, Wei ; Wang, Qian ; Chen, Mingchen ; Chen, Xun ; Wolynes, Peter G. ; Gao, Yang</creatorcontrib><description>Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2202239119</identifier><identifier>PMID: 35914145</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Associative memory ; ATP ; Bacteriophage T7 - enzymology ; Bacteriophage T7 - genetics ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Helicases - metabolism ; DNA Primase - metabolism ; DNA, Single-Stranded ; Hydrolysis ; Phages ; Physical Sciences ; Primase ; Protein Conformation ; Proteins ; Single-stranded DNA ; Translocation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (32), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Aug 9, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-734bf1b5f5b06a9771d68aa8c2d19ce3d6ff2e0ab30b2ab7c42bab10d60474cc3</citedby><cites>FETCH-LOGICAL-c443t-734bf1b5f5b06a9771d68aa8c2d19ce3d6ff2e0ab30b2ab7c42bab10d60474cc3</cites><orcidid>0000-0002-4037-0431 ; 0000-0001-9525-4166 ; 0000-0001-7975-9287 ; 0000-0001-9494-6128 ; 0000-0002-1572-2909 ; 0000-0003-3916-7871 ; 0000-0002-0601-8397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371691/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371691/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35914145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno, Carlos</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Mingchen</creatorcontrib><creatorcontrib>Chen, Xun</creatorcontrib><creatorcontrib>Wolynes, Peter G.</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><title>Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation.</description><subject>Adenosine</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Associative memory</subject><subject>ATP</subject><subject>Bacteriophage T7 - enzymology</subject><subject>Bacteriophage T7 - genetics</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Primase - metabolism</subject><subject>DNA, Single-Stranded</subject><subject>Hydrolysis</subject><subject>Phages</subject><subject>Physical Sciences</subject><subject>Primase</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Single-stranded DNA</subject><subject>Translocation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCmRMoEpde0o4_Eq8vSNW2QKUKLuVsjR1nk5UTBzup6H-PV1sW6GXmML_3NDOPkHcULihIfjmNmC4YA8a4olS9ICsKipa1UPCSrACYLNeCiRNymtIOAFS1htfkhFeKCiqqFTGbMEzLjHMfRvT-sXC_Jh9iP26LuXPF4GyHY5-GIrSFQTu72Iepw60r7mWxnUTROd9bTK6YI47JB5utshh9yDWl629Xb8irFn1yb5_6Gfnx-eZ-87W8-_7ldnN1V1oh-FxKLkxLTdVWBmpUUtKmXiOuLWuoso43ddsyB2g4GIZGWsEMGgpNDUIKa_kZ-XTwnRYzuMa6Ma_k9RT7AeOjDtjr_ydj3-lteNCKS1ormg3Onwxi-Lm4NOuhT9Z5j6MLS9KsVpLXslYqox-fobuwxPzBTEkAqTiDPXV5oGwMKUXXHpehoPf56X1--m9-WfHh3xuO_J_AMvD-AOzSHOJxziSVGZD8NzZ-ook</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Bueno, Carlos</creator><creator>Lu, Wei</creator><creator>Wang, Qian</creator><creator>Chen, Mingchen</creator><creator>Chen, Xun</creator><creator>Wolynes, Peter G.</creator><creator>Gao, Yang</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0001-9525-4166</orcidid><orcidid>https://orcid.org/0000-0001-7975-9287</orcidid><orcidid>https://orcid.org/0000-0001-9494-6128</orcidid><orcidid>https://orcid.org/0000-0002-1572-2909</orcidid><orcidid>https://orcid.org/0000-0003-3916-7871</orcidid><orcidid>https://orcid.org/0000-0002-0601-8397</orcidid></search><sort><creationdate>20220809</creationdate><title>Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA</title><author>Bueno, Carlos ; Lu, Wei ; Wang, Qian ; Chen, Mingchen ; Chen, Xun ; Wolynes, Peter G. ; Gao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-734bf1b5f5b06a9771d68aa8c2d19ce3d6ff2e0ab30b2ab7c42bab10d60474cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Associative memory</topic><topic>ATP</topic><topic>Bacteriophage T7 - enzymology</topic><topic>Bacteriophage T7 - genetics</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Primase - metabolism</topic><topic>DNA, Single-Stranded</topic><topic>Hydrolysis</topic><topic>Phages</topic><topic>Physical Sciences</topic><topic>Primase</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Single-stranded DNA</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno, Carlos</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Chen, Mingchen</creatorcontrib><creatorcontrib>Chen, Xun</creatorcontrib><creatorcontrib>Wolynes, Peter G.</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno, Carlos</au><au>Lu, Wei</au><au>Wang, Qian</au><au>Chen, Mingchen</au><au>Chen, Xun</au><au>Wolynes, Peter G.</au><au>Gao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-08-09</date><risdate>2022</risdate><volume>119</volume><issue>32</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35914145</pmid><doi>10.1073/pnas.2202239119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0001-9525-4166</orcidid><orcidid>https://orcid.org/0000-0001-7975-9287</orcidid><orcidid>https://orcid.org/0000-0001-9494-6128</orcidid><orcidid>https://orcid.org/0000-0002-1572-2909</orcidid><orcidid>https://orcid.org/0000-0003-3916-7871</orcidid><orcidid>https://orcid.org/0000-0002-0601-8397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (32), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371691 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine Adenosine Diphosphate - metabolism Adenosine triphosphate Adenosine Triphosphate - metabolism Associative memory ATP Bacteriophage T7 - enzymology Bacteriophage T7 - genetics Biological Sciences Deoxyribonucleic acid DNA DNA helicase DNA Helicases - metabolism DNA Primase - metabolism DNA, Single-Stranded Hydrolysis Phages Physical Sciences Primase Protein Conformation Proteins Single-stranded DNA Translocation |
title | Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20exploring%20the%20mechanism%20of%20bacteriophage%20T7%20gp4%20helicase%20translocating%20along%20ssDNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bueno,%20Carlos&rft.date=2022-08-09&rft.volume=119&rft.issue=32&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2202239119&rft_dat=%3Cjstor_pubme%3E27171417%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700793209&rft_id=info:pmid/35914145&rft_jstor_id=27171417&rfr_iscdi=true |