Computationally exploring the mechanism of bacteriophage T7 gp4 helicase translocating along ssDNA
Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynam...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (32), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2202239119 |