Tcf-1 promotes genomic instability and T cell transformation in response to aberrant β-catenin activation
Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of β-catenin in thymocytes, which bear recurrent translocations, depend on Tcf-1. The DNA double...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (32), p.e2201493119 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of β-catenin in thymocytes, which bear recurrent
translocations, depend on Tcf-1. The DNA double strand breaks (DSBs) in the
site of the translocation are Rag-generated, whereas the
DSBs are not. Aberrantly activated β-catenin redirects Tcf-1 binding to novel DNA sites to alter chromatin accessibility and down-regulate genome-stability pathways. Impaired homologous recombination (HR) DNA repair and replication checkpoints lead to retention of DSBs that promote translocations and transformation of double-positive (DP) thymocytes. The resulting lymphomas, which resemble human T cell acute lymphoblastic leukemia (T-ALL), are sensitive to PARP inhibitors (PARPis). Our findings indicate that aberrant β-catenin signaling contributes to translocations in thymocytes by guiding Tcf-1 to promote the generation and retention of replication-induced DSBs allowing their coexistence with Rag-generated DSBs. Thus, PARPis could offer therapeutic options in hematologic malignancies with active Wnt/β-catenin signaling. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.2201493119 |