Assessment of a Comparative Bayesian-Enhanced Population-Based Decision Model for COVID-19 Critical Care Prediction in the Dominican Republic Social Security Affiliates

INTRODUCTIONThe novel coronavirus disease 2019 (COVID-19) has been a major health concern worldwide. This study aims to develop a Bayesian model to predict critical outcomes in patients with COVID-19. METHODSSensitivity and specificity were obtained from previous meta-analysis studies. The complex v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curēus (Palo Alto, CA) CA), 2022-07, Vol.14 (7), p.e26781-e26781
Hauptverfasser: Baez, Amado A, Lopez, Oscar J, Martinez, Maria, White, Colyn, Ramirez-Slaibe, Pedro, Martinez, Leticia, Castellanos, Pedro L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:INTRODUCTIONThe novel coronavirus disease 2019 (COVID-19) has been a major health concern worldwide. This study aims to develop a Bayesian model to predict critical outcomes in patients with COVID-19. METHODSSensitivity and specificity were obtained from previous meta-analysis studies. The complex vulnerability index (IVC-COV2 index for its abbreviation in Spanish) was used to set the pretest probability. Likelihood ratios were integrated into a Fagan nomogram for posttest probabilities, and IVC-COV2 + National Early Warning Score (NEWS) values and CURB-65 scores were generated. Absolute and relative diagnostic gains (RDGs) were calculated based on pretest and posttest differences. RESULTSThe IVC-COV2 index was derived from a population of 1,055,746 individuals and was based on mortality in high-risk (71.97%), intermediate-risk (26.11%), and low-risk (1.91%) groups. The integration of models in which IVC-COV2 intermediate + NEWS ≥ 5 and CURB-65 > 2 led to a "number needed to (NNT) diagnose" that was slightly improved in the CURB-65 model (2 vs. 3). A comparison of diagnostic gains revealed that neither the positive likelihood ratio (P = 0.62) nor the negative likelihood ratio (P = 0.95) differed significantly between the IVC-COV2 NEWS model and the CURB-65 model. CONCLUSIONAccording to the proposed mathematical model, the combination of the IVC-COV2 intermediate score and NEWS or CURB-65 score yields superior results and a greater predictive value for the severity of illness. To the best of our knowledge, this is the first population-based/mathematical model developed for use in COVID-19 critical care decision-making.
ISSN:2168-8184
2168-8184
DOI:10.7759/cureus.26781