Curcumin partly prevents ISG15 activation via ubiquitin-activating enzyme E1-like protein and decreases ISGylation

The expression of the ubiquitin-like molecule interferon-stimulated gene 15 kDa (ISG15) and post-translational protein modification by ISG15 (ISGylation) are strongly activated by interferons or pathogen infection, suggesting that ISG15 and ISGylation play an important role in innate immune response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2022-10, Vol.625, p.94-101
Hauptverfasser: Oki, Nodoka, Yamada, Shino, Tanaka, Tamaki, Fukui, Hiromi, Hatakeyama, Shigetsugu, Okumura, Fumihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression of the ubiquitin-like molecule interferon-stimulated gene 15 kDa (ISG15) and post-translational protein modification by ISG15 (ISGylation) are strongly activated by interferons or pathogen infection, suggesting that ISG15 and ISGylation play an important role in innate immune responses. More than 400 proteins have been found to be ISGylated. ISG15 is removed from substrates by interferon-induced ubiquitin-specific peptidase 18 or severe acute respiratory syndrome coronavirus 2‒derived papain-like protease. Therefore, maintaining strong ISGylation may help prevent the spread of coronavirus disease 2019 (COVID-19). However, it is unknown whether nutrients or chemicals affect ISGylation level. Curcumin is the major constituent of turmeric and functions as an immunomodulator. Here, we investigated the effect of curcumin on ISGylation. MCF10A and A549 cells were treated with interferon α and curcumin after which the expression levels of various proteins were determined. The effect of curcumin on ubiquitylation was also determined. Curcumin treatment was found to reduce ISGylation in a dose-dependent manner. The findings suggested that curcumin partly prevents disulfide bond-mediated ISG15 dimerization directly or indirectly, thereby increasing monomer ISG15 levels. Reduced ISGylation may also occur via the prevention of ISG15 activation by ubiquitin-activating enzyme E1-like protein. In conclusion, curcumin treatment was found to reduce ISGylation, suggesting that it may contribute to severe COVID-19. This is the first study to report a relationship between ISGylation and a food component. •Curcumin reduces ISGylation in a dose-dependent manner.•Curcumin increases monomer ISG15 levels.•Curcumin partly prevents ISG15 activation by UBE1L.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2022.08.003