Design, Synthesis, and Bioactivity of Novel Bifunctional Small Molecules for Alzheimer’s disease

The abnormal phosphorylation of the τ-protein is a typical early pathological feature of Alzheimer’s disease (AD). The excessive phosphorylation of the τ-protein in the brain causes the formation of neurofibrillary tangles (NFTs) and increases the neurotoxicity of amyloid-β (Aβ). Thus, targeting the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-08, Vol.7 (30), p.26308-26315
Hauptverfasser: Liang, Meihao, Gu, Lili, Zhang, Hongjie, Min, Jingli, Wang, Zunyuan, Ma, Zhen, Zhang, Chixiao, Zeng, Shenxin, Pan, Youlu, Yan, Dongmei, Shen, Zhengrong, Huang, Wenhai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The abnormal phosphorylation of the τ-protein is a typical early pathological feature of Alzheimer’s disease (AD). The excessive phosphorylation of the τ-protein in the brain causes the formation of neurofibrillary tangles (NFTs) and increases the neurotoxicity of amyloid-β (Aβ). Thus, targeting the τ-protein is considered a promising strategy for treating AD. Herein, we designed and synthesized a series of molecules containing bifunctional groups to recognize the τ-protein and the E3 ligase. The molecules were examined in vitro, and their effects were tested on PC12 cells. In addition, we further studied the pharmacokinetics of compound I3 in healthy rats. Our data showed that compound I3 could effectively degrade τ-protein, reduce Aβ-induced cytotoxicity, and regulate the uneven distribution of mitochondria, which may open a new therapeutic strategy for the treatment of AD.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.2c02130