Erythropoietin promotes the differentiation of fetal neural stem cells into glial cells via the erythropoietin receptor‐β common receptor/Syne‐1/H3K9me3 pathway
Aims To investigate the effect of erythropoietin (EPO) on the differentiation of neural stem cells (NSCs)/neural progenitors (NPs) in the treatment of hypoxic–ischemic injury and its potential mechanisms. Methods Fetal NSCs/NPs were treated with EPO after oxygen and glucose deprivation/reoxygenation...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2022-09, Vol.28 (9), p.1351-1364 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims
To investigate the effect of erythropoietin (EPO) on the differentiation of neural stem cells (NSCs)/neural progenitors (NPs) in the treatment of hypoxic–ischemic injury and its potential mechanisms.
Methods
Fetal NSCs/NPs were treated with EPO after oxygen and glucose deprivation/reoxygenation (OGD/R). Cell viability, proliferation, and differentiation of NSCs/NPs were detected by CellTiter‐Glo, Edu assay, flow cytometry, and quantitative real‐time PCR (qPCR). Immunofluorescence staining, co‐immunoprecipitation (Co‐IP), and western blotting were used to test the existence of EPO receptor/β common receptor (EPOR/βCR) heterodimer on NSCs/NPs and the possible pathway.
Results
EPO treatment at different time points increased cell viability without affecting proliferation. EPO treatment immediately after OGD/R promoted oligodendrocyte and astrocyte differentiation, while decreasing neuronal differentiation of NSCs/NPs. EPOR/βCR heterodimer existed on the cell surface of the fetal cortical NSCs/NPs, EPO treatment significantly increased the mRNA expression of βCR and elevated the correlation between EPOR and βCR levels. In addition, mass spectrometry analysis identified Syne‐1 as a downstream signaling molecule of the EPOR/βCR heterodimer. Immunofluorescence staining and western blotting indicated that the βCR/Syne‐1/H3K9me3 pathway was possibly involved in the differentiation of fetal neural stem cells into the glial cell effect of EPO.
Conclusion
EPO treatment immediately after OGD/R could not facilitate fetal NSCs/NPs neurogenesis but promoted the formation of the EPOR/βCR heterodimer on fetal NSCs/NPs, which mediates its function in glial differentiation.
EPO activates the EPOR‐βCR/Syne‐1/H3K9me3 signaling pathway and controls the cell fate switch of NSCs/NPs. |
---|---|
ISSN: | 1755-5930 1755-5949 |
DOI: | 10.1111/cns.13876 |