Type 2 alveolar epithelial cell-derived circulating extracellular vesicle-encapsulated surfactant protein C as a mediator of cardiac inflammation in COVID-19
Among the countless endeavours made at elucidating the pathogenesis of COVID-19, those aimed at the histopathological alterations of type 2 alveolar epithelial cells (AT2) are of outstanding relevance to the field of lung physiology, as they are the building blocks of the pulmonary alveoli. A merit...
Gespeichert in:
Veröffentlicht in: | Inflammation research 2022-09, Vol.71 (9), p.1003-1009 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among the countless endeavours made at elucidating the pathogenesis of COVID-19, those aimed at the histopathological alterations of type 2 alveolar epithelial cells (AT2) are of outstanding relevance to the field of lung physiology, as they are the building blocks of the pulmonary alveoli. A merit of high regenerative and proliferative capacity, exocytotic activity resulting in the release of extracellular vesicles (EVs) is particularly high in AT2 cells, especially in those infected with SARS-CoV-2. These AT2 cell-derived EVs, containing the genetic material of the virus, might enter the bloodstream and make their way into the cardiovascular system, where they may infect cardiomyocytes and bring about a series of events leading to heart failure. As surfactant protein C, a marker of AT2 cell activity and a constituent of the lung surfactant complex, occurs abundantly inside the AT2-derived EVs released during the inflammatory stage of COVID-19, it could potentially be used as a biomarker for predicting impending heart failure in those patients with a history of cardiovascular disease. |
---|---|
ISSN: | 1023-3830 1420-908X |
DOI: | 10.1007/s00011-022-01612-z |