Natural inhibitors for severe acute respiratory syndrome coronavirus 2 main protease from Moringa oleifera, Aloe vera, and Nyctanthes arbor-tristis: molecular docking and ab initio fragment molecular orbital calculations
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide, and new drug treatments for COVID-19 are urgently required. To find the potential inhibitors against the main protease (Mpro) of SARS-CoV-2, we investigated the...
Gespeichert in:
Veröffentlicht in: | Structural chemistry 2022-10, Vol.33 (5), p.1771-1788 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide, and new drug treatments for COVID-19 are urgently required. To find the potential inhibitors against the main protease (Mpro) of SARS-CoV-2, we investigated the inhibitory potential of naturally occurring compounds from the plants
Moringa oleifera
,
Aloe vera
, and
Nyctanthes arbor-tristis
, using molecular docking, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations. Of the 35 compounds that we simulated, feralolide from
Aloe vera
exhibited the highest binding affinity against Mpro. Therefore, we proposed novel compounds based on the feralolide and investigated their binding properties to Mpro. The FMO results indicated that the introduction of a hydroxyl group into feralolide significantly enhances its binding affinity to Mpro. These results provide useful information for developing potent Mpro inhibitors. |
---|---|
ISSN: | 1040-0400 1572-9001 |
DOI: | 10.1007/s11224-022-02021-y |