Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glu...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2022-07, Vol.145 (7), p.2276-2292 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2292 |
---|---|
container_issue | 7 |
container_start_page | 2276 |
container_title | Brain (London, England : 1878) |
container_volume | 145 |
creator | Zhu, Winston M Neuhaus, Ain Beard, Daniel J Sutherland, Brad A DeLuca, Gabriele C |
description | To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease. |
doi_str_mv | 10.1093/brain/awac174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664802372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</originalsourceid><addsrcrecordid>eNpVkT1PxDAMhiMEguNgZEXdYCkkTZM0CxJCfEkIFpgjN3FpUJseyfUQ_HoOOE4wefDj15YfQg4YPWFU89M6gg-n8AaWqXKDTFgpaV4wITfJhFIq80oLukN2U3qhlJW8kNtkhwshGBdyQsw9jnFYQLJjBzGzwzjrfHjOerQtBJ_6lPmQtQjdvM0guCz848ewnlhi591Hi77HeJQy5xNCwj2y1UCXcH9Vp-Tp6vLx4ia_e7i-vTi_yy2v1DzHRlfK2cZSVVhVYUm1olzzunFM8wKcRgeaNQVTvBY1Ai8tSOukqp2gpeBTcvaTOxvrHp3FMI_QmVn0PcR3M4A3_zvBt-Z5WBjNuaqWf5mS41VAHF5HTHPT-2Sx6yDgMCZTSFlWtOCqWKL5D2rjkFLEZr2GUfMlxXxLMSspS_7w721r-tcC_wSLx43w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664802372</pqid></control><display><type>article</type><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</creator><creatorcontrib>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</creatorcontrib><description>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awac174</identifier><identifier>PMID: 35551356</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Review</subject><ispartof>Brain (London, England : 1878), 2022-07, Vol.145 (7), p.2276-2292</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</citedby><cites>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</cites><orcidid>0000-0002-3171-938X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35551356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Winston M</creatorcontrib><creatorcontrib>Neuhaus, Ain</creatorcontrib><creatorcontrib>Beard, Daniel J</creatorcontrib><creatorcontrib>Sutherland, Brad A</creatorcontrib><creatorcontrib>DeLuca, Gabriele C</creatorcontrib><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</description><subject>Review</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkT1PxDAMhiMEguNgZEXdYCkkTZM0CxJCfEkIFpgjN3FpUJseyfUQ_HoOOE4wefDj15YfQg4YPWFU89M6gg-n8AaWqXKDTFgpaV4wITfJhFIq80oLukN2U3qhlJW8kNtkhwshGBdyQsw9jnFYQLJjBzGzwzjrfHjOerQtBJ_6lPmQtQjdvM0guCz848ewnlhi591Hi77HeJQy5xNCwj2y1UCXcH9Vp-Tp6vLx4ia_e7i-vTi_yy2v1DzHRlfK2cZSVVhVYUm1olzzunFM8wKcRgeaNQVTvBY1Ai8tSOukqp2gpeBTcvaTOxvrHp3FMI_QmVn0PcR3M4A3_zvBt-Z5WBjNuaqWf5mS41VAHF5HTHPT-2Sx6yDgMCZTSFlWtOCqWKL5D2rjkFLEZr2GUfMlxXxLMSspS_7w721r-tcC_wSLx43w</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Zhu, Winston M</creator><creator>Neuhaus, Ain</creator><creator>Beard, Daniel J</creator><creator>Sutherland, Brad A</creator><creator>DeLuca, Gabriele C</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3171-938X</orcidid></search><sort><creationdate>20220729</creationdate><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><author>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Winston M</creatorcontrib><creatorcontrib>Neuhaus, Ain</creatorcontrib><creatorcontrib>Beard, Daniel J</creatorcontrib><creatorcontrib>Sutherland, Brad A</creatorcontrib><creatorcontrib>DeLuca, Gabriele C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Winston M</au><au>Neuhaus, Ain</au><au>Beard, Daniel J</au><au>Sutherland, Brad A</au><au>DeLuca, Gabriele C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2022-07-29</date><risdate>2022</risdate><volume>145</volume><issue>7</issue><spage>2276</spage><epage>2292</epage><pages>2276-2292</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35551356</pmid><doi>10.1093/brain/awac174</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3171-938X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2022-07, Vol.145 (7), p.2276-2292 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337814 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Review |
title | Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurovascular%20coupling%20mechanisms%20in%20health%20and%20neurovascular%20uncoupling%20in%20Alzheimer's%20disease&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Zhu,%20Winston%20M&rft.date=2022-07-29&rft.volume=145&rft.issue=7&rft.spage=2276&rft.epage=2292&rft.pages=2276-2292&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awac174&rft_dat=%3Cproquest_pubme%3E2664802372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664802372&rft_id=info:pmid/35551356&rfr_iscdi=true |