Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease

To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2022-07, Vol.145 (7), p.2276-2292
Hauptverfasser: Zhu, Winston M, Neuhaus, Ain, Beard, Daniel J, Sutherland, Brad A, DeLuca, Gabriele C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2292
container_issue 7
container_start_page 2276
container_title Brain (London, England : 1878)
container_volume 145
creator Zhu, Winston M
Neuhaus, Ain
Beard, Daniel J
Sutherland, Brad A
DeLuca, Gabriele C
description To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.
doi_str_mv 10.1093/brain/awac174
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664802372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</originalsourceid><addsrcrecordid>eNpVkT1PxDAMhiMEguNgZEXdYCkkTZM0CxJCfEkIFpgjN3FpUJseyfUQ_HoOOE4wefDj15YfQg4YPWFU89M6gg-n8AaWqXKDTFgpaV4wITfJhFIq80oLukN2U3qhlJW8kNtkhwshGBdyQsw9jnFYQLJjBzGzwzjrfHjOerQtBJ_6lPmQtQjdvM0guCz848ewnlhi591Hi77HeJQy5xNCwj2y1UCXcH9Vp-Tp6vLx4ia_e7i-vTi_yy2v1DzHRlfK2cZSVVhVYUm1olzzunFM8wKcRgeaNQVTvBY1Ai8tSOukqp2gpeBTcvaTOxvrHp3FMI_QmVn0PcR3M4A3_zvBt-Z5WBjNuaqWf5mS41VAHF5HTHPT-2Sx6yDgMCZTSFlWtOCqWKL5D2rjkFLEZr2GUfMlxXxLMSspS_7w721r-tcC_wSLx43w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664802372</pqid></control><display><type>article</type><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</creator><creatorcontrib>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</creatorcontrib><description>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awac174</identifier><identifier>PMID: 35551356</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Review</subject><ispartof>Brain (London, England : 1878), 2022-07, Vol.145 (7), p.2276-2292</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</citedby><cites>FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</cites><orcidid>0000-0002-3171-938X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35551356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Winston M</creatorcontrib><creatorcontrib>Neuhaus, Ain</creatorcontrib><creatorcontrib>Beard, Daniel J</creatorcontrib><creatorcontrib>Sutherland, Brad A</creatorcontrib><creatorcontrib>DeLuca, Gabriele C</creatorcontrib><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</description><subject>Review</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkT1PxDAMhiMEguNgZEXdYCkkTZM0CxJCfEkIFpgjN3FpUJseyfUQ_HoOOE4wefDj15YfQg4YPWFU89M6gg-n8AaWqXKDTFgpaV4wITfJhFIq80oLukN2U3qhlJW8kNtkhwshGBdyQsw9jnFYQLJjBzGzwzjrfHjOerQtBJ_6lPmQtQjdvM0guCz848ewnlhi591Hi77HeJQy5xNCwj2y1UCXcH9Vp-Tp6vLx4ia_e7i-vTi_yy2v1DzHRlfK2cZSVVhVYUm1olzzunFM8wKcRgeaNQVTvBY1Ai8tSOukqp2gpeBTcvaTOxvrHp3FMI_QmVn0PcR3M4A3_zvBt-Z5WBjNuaqWf5mS41VAHF5HTHPT-2Sx6yDgMCZTSFlWtOCqWKL5D2rjkFLEZr2GUfMlxXxLMSspS_7w721r-tcC_wSLx43w</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Zhu, Winston M</creator><creator>Neuhaus, Ain</creator><creator>Beard, Daniel J</creator><creator>Sutherland, Brad A</creator><creator>DeLuca, Gabriele C</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3171-938X</orcidid></search><sort><creationdate>20220729</creationdate><title>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</title><author>Zhu, Winston M ; Neuhaus, Ain ; Beard, Daniel J ; Sutherland, Brad A ; DeLuca, Gabriele C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ef987dcfc072c78e40970393bfd1932ad9eda91f2173b5bea34ca6cd67bd50453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Winston M</creatorcontrib><creatorcontrib>Neuhaus, Ain</creatorcontrib><creatorcontrib>Beard, Daniel J</creatorcontrib><creatorcontrib>Sutherland, Brad A</creatorcontrib><creatorcontrib>DeLuca, Gabriele C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Winston M</au><au>Neuhaus, Ain</au><au>Beard, Daniel J</au><au>Sutherland, Brad A</au><au>DeLuca, Gabriele C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2022-07-29</date><risdate>2022</risdate><volume>145</volume><issue>7</issue><spage>2276</spage><epage>2292</epage><pages>2276-2292</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signaling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signaling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer's disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer's Disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35551356</pmid><doi>10.1093/brain/awac174</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3171-938X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2022-07, Vol.145 (7), p.2276-2292
issn 0006-8950
1460-2156
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337814
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Review
title Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurovascular%20coupling%20mechanisms%20in%20health%20and%20neurovascular%20uncoupling%20in%20Alzheimer's%20disease&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Zhu,%20Winston%20M&rft.date=2022-07-29&rft.volume=145&rft.issue=7&rft.spage=2276&rft.epage=2292&rft.pages=2276-2292&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awac174&rft_dat=%3Cproquest_pubme%3E2664802372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664802372&rft_id=info:pmid/35551356&rfr_iscdi=true