Research on Application Experience Design of Ice and Snow Sports Equipment Based on Bee Colony Model

Sports equipment is the key to the smooth development of ice and snow sports. With the rapid development of social economy and the improvement of people’s living standards, the demand for ice and snow sports equipment is increasing day by day. This article presents an improved method based on the ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental and public health 2022, Vol.2022 (1), p.8760053-8760053
Hauptverfasser: Li, Yuanjing, Yang, Jintian, Gao, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sports equipment is the key to the smooth development of ice and snow sports. With the rapid development of social economy and the improvement of people’s living standards, the demand for ice and snow sports equipment is increasing day by day. This article presents an improved method based on the chaos theory and the bee colony algorithm to quantify the application experience design of ice and snow sports equipment and reduce the influence of uncertain factors on the design results. First, the chaos theory can establish the dataset of application experience design and analyze the discreteness of the set. According to the bee colony algorithm, the dataset is divided into several groups, and each group obtains the best application experience design by using the design optimization strategy. Finally, the results are mixed to obtain the final experience design results. Through MATLAB simulation analysis and verification, the improved bee colony model can improve the accuracy of application experience design of ice and snow sports equipment in an uncertain environment, shorten the overall design time, and meet the requirements of application experience design of different ice and snow sports equipment. Therefore, the model proposed in this paper is suitable for the application experience design of ice and snow sports equipment.
ISSN:1687-9805
1687-9813
DOI:10.1155/2022/8760053