Phylogenomic analyses in Phrymaceae reveal extensive gene tree discordance in relationships among major clades

Premise Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well‐supported phylogeny as a basis for a stable taxonomy and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2022-06, Vol.109 (6), p.1035-1046
Hauptverfasser: Morales‐Briones, Diego F., Lin, Nan, Huang, Eileen Y., Grossenbacher, Dena L., Sobel, James M., Gilmore, Caroline D., Tank, David C., Yang, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Premise Phylogenomic datasets using genomes and transcriptomes provide rich opportunities beyond resolving bifurcating phylogenetic relationships. Monkeyflower (Phrymaceae) is a model system for evolutionary ecology. However, it lacks a well‐supported phylogeny as a basis for a stable taxonomy and for macroevolutionary comparisons. Methods We sampled 24 genomes and transcriptomes in Phrymaceae and closely related families, including eight newly sequenced transcriptomes. We reconstructed the phylogeny using IQ‐TREE and ASTRAL, evaluated gene tree discordance using PhyParts, Quartet Sampling, and a cloudogram, and carried out reticulation analyses using PhyloNet and HyDe. We searched for whole genome duplication (WGD) events using chromosome numbers, synonymous distances, and gene duplication events as evidence. Results Most gene trees support the monophyly of Phrymaceae and each of its tribes. Most gene trees also support tribe Mimuleae being sister to Phrymeae + Diplaceae + Leucocarpeae, with extensive gene tree discordance among the latter three. Despite the discordance, the monophyly of Mimulus s.l. is rejected, and no individual reticulation event among the Phrymaceae tribes is well‐supported. Reticulation likely occurred among Erythranthe bicolor and closely related species. No ancient WGD was detected in Phrymaceae. Instead, small‐scale duplications are among potential drivers of macroevolutionary diversification of Phrymaceae. Conclusions We show that analysis of reticulate evolution is sensitive to taxon sampling and methods used. We also demonstrate that phylogenomic datasets using genomes and transcriptomes present rich opportunities to investigate gene family evolution and genome duplication events involved in lineage diversification and adaptation.
ISSN:0002-9122
1537-2197
DOI:10.1002/ajb2.1860