Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury
Myocardial ischemia reperfusion (IR) injury is closely related to the overwhelming inflammation in the myocardium. Herein, cardiomyocyte-targeted nanotherapeutics were developed for the reactive oxygen species (ROS)-ultrasensitive co-delivery of dexamethasone (Dex) and RAGE small interfering RNA (si...
Gespeichert in:
Veröffentlicht in: | Nano research 2022, Vol.15 (10), p.9125-9134 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myocardial ischemia reperfusion (IR) injury is closely related to the overwhelming inflammation in the myocardium. Herein, cardiomyocyte-targeted nanotherapeutics were developed for the reactive oxygen species (ROS)-ultrasensitive co-delivery of dexamethasone (Dex) and RAGE small interfering RNA (siRAGE) to attenuate myocardial inflammation. PPTP, a ROS-degradable polycation based on PGE
2
-modified, PEGylated, ditellurium-crosslinked polyethylenimine (PEI) was developed to surface-decorate the Dex-encapsulated mesoporous silica nanoparticles (MSNs), which simultaneously condensed siRAGE and gated the MSNs to prevent the Dex pre-leakage. Upon intravenous injection to IR-injured rats, the nanotherapeutics could be efficiently transported into the inflamed cardiomyocytes via PGE
2
-assisted recognition of over-expressed E-series of prostaglandin (EP) receptors on the cell membranes. Intracellularly, the over-produced ROS degraded PPTP into small segments, promoting the release of siRAGE and Dex to mediate effective RAGE silencing (72%) and cooperative antiinflammatory effect. As a consequence, the nanotherapeutics notably suppressed the myocardial fibrosis and apoptosis, ultimately recovering the systolic function. Therefore, the current nanotherapeutics represent an effective example for the co-delivery and on-demand release of nucleic acid and chemodrug payloads, and might find promising utilities toward the synergistic management of myocardial inflammation. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-022-4553-6 |