Shape Memory Behaviour of PMMA-Coated NiTi Alloy under Thermal Cycle

Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA–NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-07, Vol.14 (14), p.2932
Hauptverfasser: Samal, Sneha, Kosjakova, Olga, Vokoun, David, Stachiv, Ivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA–NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated on one side with PMMA. The composite was prepared by the spin coating method with an alloy-to-polymer-thickness ratio of 1:3. The bending stiffness and radius of curvature were calculated by using numerical and experimental methods during thermal cycles. The experimental radius curvatures in actuation have good agreement with the model. The change in shape results from the difference in coefficients of thermal expansion between PMMA and NiTi. Actuation temperatures were between 0 and 100 °C for the SMA–PMMA composite with a change in curvature from 10 to 120 mm with fixed Young’s modulus of PMMA at 3 GPa, and a change in Young’s modulus of NiTi from 30 to 70 GPa. PMMA–NiTi composites are useful as actuators and sensor elements.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14142932