Diagnostic Accuracy of Various Immunochromatographic Tests for NS1 Antigen and IgM Antibodies Detection in Acute Dengue Virus Infection

Introduction: Rapid diagnostic tests (RDTs) were evaluated, in this paper, for their utility as a reliable test, using resource-constrained studies. In most studies, NS1 antigen and immunoglobulin M (IgM)-based immunochromatographic tests (ICTs) were considered for acute phase detection. We aimed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-07, Vol.19 (14), p.8756
Hauptverfasser: Haider, Mughees, Yousaf, Saira, Zaib, Asifa, Sarfraz, Azza, Sarfraz, Zouina, Cherrez-Ojeda, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Rapid diagnostic tests (RDTs) were evaluated, in this paper, for their utility as a reliable test, using resource-constrained studies. In most studies, NS1 antigen and immunoglobulin M (IgM)-based immunochromatographic tests (ICTs) were considered for acute phase detection. We aimed to evaluate the diagnostic accuracy of NS1, IgM, and NS1/IgM-based ICTs to detect acute dengue virus (DENV) infection in dengue-endemic regions. Methods: Studies were electronically identified using the following databases: MEDLINE, Embase, Cochrane Library, Web of Science, and CINAHL Plus. Keywords including dengue, rapid diagnostic test, immunochromatography, sensitivity, specificity, and diagnosis were applied across databases. In total, 15 studies were included. Quality assessment of the included studies was performed using the QUADAS-2 tool. All statistical analyses were conducted using RevMan, MedCalc, and SPSS software. Results: The studies revealed a total of 4135 individuals, originating largely from the Americas and Asia. The prevalence of DENV cases was 53.8%. Pooled sensitivities vs. specificities for NS1 (only), IgM (only) and combined NS1/IgM were 70.97% vs. 94.73%, 40.32% vs. 93.01%, and 78.62% vs. 88.47%, respectively. Diagnostic odds ratio (DOR) of DENV for NS1 ICTs was 43.95 (95% CI: 36.61−52.78), for IgM only ICTs was 8.99 (95% CI: 7.25−11.16), and for NS1/IgM ICTs was 28.22 (95% CI: 24.18−32.95). ELISA ICTs yielded a DOR of 21.36, 95% CI: 17.08−26.741. RT-PCR had a DOR of 40.43, 95% CI: 23.3−71.2. Heterogeneity tests for subgroup analysis by ICT manufacturers for NS1 ICTs revealed an χ2 finding of 158.818 (df = 8), p < 0.001, whereas for IgM ICTs, the χ2 finding was 21.698 (df = 5), p < 0.001. Conclusion: NS1-based ICTs had the highest diagnostic accuracy in acute phases of DENV infection. Certain factors influenced the pooled sensitivity, including ICT manufacturers, nature of the infection, reference method (RT-PCR), and serotypes. Prospective studies may examine the best strategy for incorporating ICTs for dengue diagnosis.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19148756