Antioxidant activity and calcium binding of isomeric hydroxybenzoates
The association constant for calcium binding to hydroxybenzoates in aqueous 0.16 M NaCl at 25 °C was found electrochemically to have the value Kass = 280 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −122 J mol−1 K−1 for the 2-isomer (salicylate), Kass = 7 mol L−1 with ΔHo = −39 kJ mol−1, ΔSo = −116 J mol−...
Gespeichert in:
Veröffentlicht in: | Journal of food and drug analysis 2018-04, Vol.26 (2), p.591-598 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The association constant for calcium binding to hydroxybenzoates in aqueous 0.16 M NaCl at 25 °C was found electrochemically to have the value Kass = 280 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −122 J mol−1 K−1 for the 2-isomer (salicylate), Kass = 7 mol L−1 with ΔHo = −39 kJ mol−1, ΔSo = −116 J mol−1 K−1 for the 3-isomer, and Kass = 8 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −155 J mol−1 K−1 for the 4-isomer. The 3- and 4-isomers were found more efficient as antioxidants than the 2-isomer in decreasing oxygen consumption rate in a peroxidating methyl linoleate emulsion and less sensitive to presence of calcium. All isomers were found prooxidative for iron-catalyzed initiation of oxidation due to enhanced radical formation as shown by electron spin resonance spectroscopy. Calcium salicylate was found to have low solubility with a solubility product Ksp = 4.49·10−6 based on activity with ΔHo = 67 kJ mol−1, ΔSo = 123 J mol−1 K−1 for dissolution in water, when corrected for the strong complex formation. Calcium in food and beverages may thus lower antioxidant activity of plant phenols through complexation or by precipitation.
[Display omitted]
•Calcium decreases the antioxidative activity of simple plant phenols like the hydroxybenzoates.•2-Hydroxybenzoate binds calcium stronger than the other isomers by a factor of 40 due to chelation.•Calcium salicylate has low aqueous solubility moderately increasing with temperature. |
---|---|
ISSN: | 1021-9498 2224-6614 |
DOI: | 10.1016/j.jfda.2017.07.001 |