Effect of Amylose and Crystallinity Pattern on the Gelatinization Behavior of Cross-Linked Starches

Starches from normal maize (NM), normal potato (NP), waxy maize (WM), and waxy potato (WP) were cross-linked with seven different concentrations (0.01, 0.05, 0.1, 0.5, 1, 5, 10%) of sodium trimetaphosphate and sodium tripolyphosphate. The use of low-amylose WM and WP as well as A-crystalline maize a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-07, Vol.14 (14), p.2870
Hauptverfasser: Kou, Tingting, Song, Jun, Liu, Mouquan, Fang, Guihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starches from normal maize (NM), normal potato (NP), waxy maize (WM), and waxy potato (WP) were cross-linked with seven different concentrations (0.01, 0.05, 0.1, 0.5, 1, 5, 10%) of sodium trimetaphosphate and sodium tripolyphosphate. The use of low-amylose WM and WP as well as A-crystalline maize and B-crystalline potato starches can determine the influence of the amylose content and crystallinity pattern on the cross-linking of starches. The results showed that the viscosity of the cross-linked starch (CLs) first increased and then deceased, and finally no viscosity was detected; WM showed no viscosity at 5% and NP at 1%. In addition, the viscosity of NM first increased and then became undetectable at 0.5%. Strikingly, the WP developed viscosity even at a 10% reagent level (RL), and it developed the highest viscosity of all samples at 1%. The starch-iodine method was a facile and high-performance method for the characterization of the cross-linking degree (CL%), having been applied to normal starches, because the increase in the CL% resulted in a decrease of iodine-complexed amylose and blue intensity. In this study, the starch-iodine method was extended to waxy starches, which stained brown with iodine, and the brown intensity decreased with the increase of the CL%. Moreover, the CL% and RL showed a linear-log relationship.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14142870