Responsivity of serotonin transporter knockout rats to short and long access to cocaine: Modulation of the glutamate signalling in the nucleus accumbens shell

Background and Purpose It has been well established that glutamate in the nucleus accumbens (NAc) plays a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin transporter (SERT−/− rats) show increased cocaine intake reminisc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of pharmacology 2022-07, Vol.179 (14), p.3727-3739
Hauptverfasser: Caffino, Lucia, Mottarlini, Francesca, Targa, Giorgia, Verheij, Michel M. M., Fumagalli, Fabio, Homberg, Judith R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Purpose It has been well established that glutamate in the nucleus accumbens (NAc) plays a critical role in the motivation to take drugs of abuse. We have previously demonstrated that rats with ablation of the serotonin transporter (SERT−/− rats) show increased cocaine intake reminiscent of compulsivity. Experimental Approach By comparing SERT−/− to SERT+/+ rats, we investigated whether SERT deletion influences glutamate homeostasis under control conditions as well as after short access (ShA: 1 h per session) or long access (LgA: 6 h per session) to cocaine self‐administration. Rats were killed at 24 h after the last self‐administration session for ex vivo molecular analyses of the main determinants of the glutamate system, including transporters (vesicular and glial), receptors (main post‐synaptic subunits of NMDA and AMPA receptors together with the metabotropic subunit mGLUR5), and scaffolding proteins (SAP102, SAP97, and GRIP) in the NAc shell (sNAc) Key Results In cocaine‐naive animals, SERT deletion was associated with changes indicative for a reduction in glutamate signalling. ShA and LgA exposure led to a further dysregulation of the glutamatergic synapse. Conclusion SERT deletion may render the glutamatergic synapses of the NAc shell more responsive to both ShA and LgA intake of cocaine.
ISSN:0007-1188
1476-5381
DOI:10.1111/bph.15823