Translational Pharmacology of PRAX‐944, a Novel T‐Type Calcium Channel Blocker in Development for the Treatment of Essential Tremor
Background Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello‐thalamo‐cortical circuitry and may be dependent on T‐type calcium channel activity. T‐type calcium cha...
Gespeichert in:
Veröffentlicht in: | Movement disorders 2022-06, Vol.37 (6), p.1193-1201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello‐thalamo‐cortical circuitry and may be dependent on T‐type calcium channel activity. T‐type calcium channels regulate sigma band electroencephalogram (EEG) power during non‐rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX‐944 is a novel T‐type calcium channel blocker in development for essential tremor.
Objectives
Using a rat tremor model and sigma‐band EEG power, we assessed pharmacodynamically‐active doses of PRAX‐944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials.
Methods
Harmaline‐induced tremor and spontaneous locomotor activity were used to assess PRAX‐944 efficacy and tolerability, respectively, in rats. Sigma‐power was used as a translational biomarker of T‐type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants.
Results
In rats, PRAX‐944 dose‐dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma‐power by ~30% to 50% in rats. In healthy participants, sigma‐power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated.
Conclusions
In rats, PRAX‐944 reduced sigma‐power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma‐power indicate that robust T‐type calcium channel blockade was achieved at well‐tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society |
---|---|
ISSN: | 0885-3185 1531-8257 |
DOI: | 10.1002/mds.28969 |